SCADOP: Phenomenological modeling of dryout in nuclear fuel rod bundles

2015 ◽  
Vol 293 ◽  
pp. 127-137 ◽  
Author(s):  
Arnab Dasgupta ◽  
D.K. Chandraker ◽  
P.K. Vijayan
2020 ◽  
Vol 10 (7) ◽  
pp. 2282
Author(s):  
Wonseok Yang ◽  
Heungseok Kang ◽  
Junhong Park

The structural behavior of the nuclear rod bundles that consisted of cylindrical beams was predicted using the spectral element method (SEM) while considering the interaction with the surrounding fluid. Viscous fluid behavior was utilized in order to calculate the forces acting on the nuclear rod bundles from the incident pressure waves. The added mass and fluid coupling on the nuclear rod bundles were determined for the position patterns and gaps of each of the cylindrical beams. The pressure field from propagating waves in the surrounding fluid was calculated with respect to the boundary conditions of the surface of the vibrating structures. With the increasing number of nuclear rods and decreasing pressure wavelengths, the structural vibration of the nuclear rod bundles that were induced by the propagating forces affected the scattering events of the pressure field. The frequency response of the nuclear rod bundles from the pressure waves in the water exhibited smaller damping, because the incident pressure wave travels without fluid coupling due to the longer wavelength when compared with distance between rods. The proposed numerical method can be utilized for the detailed design for effective parameters of a supporting system to reduce the vibration of nuclear fuel rod bundles for safety control.


Author(s):  
Vladimir Stevanovic ◽  
Zoran Stosic ◽  
Uwe Stoll

The efficiency of ex-core cooling of nuclear fuel assemblies under decay heat generation is influenced by many conditions, among them being coolant flow rate, position of fuel assemblies in a water pool, and position of coolant inlets and outlets. Although the decay heat generation is lower than the nominal heat power of fuel bundles in operation, the much lower coolant flow rates and coolant inlets and outlets positions can lead to incidents conditions, with a violation of the fuel assembly integrity. Such a combination of unacceptable thermal-hydraulic conditions occurred at the Nuclear Power Plant Paks in Hungary in April 2003, during the process of nuclear fuel assembly chemical cleaning in a specially designed tank. The cooling of the nuclear fuel rod bundles in the tank was not efficient under low coolant flow rates through the cleaning tank, and after several hours the boiling of cooling water occurred with subsequent dry-out of nuclear fuel rod bundles. The thermal-hydraulic conditions in the cleaning tank that led to the unexpected event are analysed both analytically and with a CFD approach for idealised conditions of one nuclear fuel rod bundle with the bottom by-pass opening. The analytical analysis is based on a pressure balance of low Reynolds number upward water coolant flow through the bundle, downward water flow in the pool around the bundle, flow across the by-pass opening and outlet flow from the cleaning vessel. The transient CFD simulations are performed in order to demonstrate multidimensional effects of the event. The water density dependence on the temperature is taken into account in both analytical and CFD investigation, as the dominant effect that influences the buoyancy forces between the water flow streams inside and outside the vertically positioned bundle in the water pool. The influence of the bundle bottom by-pass area on the water pool thermal-hydraulic conditions and on the efficiency of the nuclear fuel rods cooling is analysed. Both analytical and CFD results show that the continuous cooling of the fuel rods can not be achieved for higher values of the bundle bottom by-pass areas. The averaged coolant temperature in the water pool outside the bundle becomes higher than the average temperature along the rod bundle, providing a “negative” buoyancy force that tends to stop the upward coolant flow through the bundle, and, hence, increases the coolant flow through the bundle by-pass at the bottom. The critical value of the by-pass area, above which the rod bundle cooling is deteriorated, is predicted.


2015 ◽  
Vol 53 (2) ◽  
pp. 232-239 ◽  
Author(s):  
Chang-Hak Kang ◽  
Sung-Uk Lee ◽  
Dong-Yol Yang ◽  
Hyo-Chan Kim ◽  
Yong-Sik Yang

Author(s):  
Kang Liu ◽  
Titan C. Paul ◽  
Leo A. Carrilho ◽  
Jamil A. Khan

The experimental investigations were carried out of a pressurized water nuclear reactor (PWR) with enhanced surface using different concentration (0.5 and 2.0 vol%) of ZnO/DI-water based nanofluids as a coolant. The experimental setup consisted of a flow loop with a nuclear fuel rod section that was heated by electrical current. The fuel rod surfaces were termed as two-dimensional surface roughness (square transverse ribbed surface) and three-dimensional surface roughness (diamond shaped blocks). The variation in temperature of nuclear fuel rod was measured along the length of a specified section. Heat transfer coefficient was calculated by measuring heat flux and temperature differences between surface and bulk fluid. The experimental results of nanofluids were compared with the coolant as a DI-water data. The maximum heat transfer coefficient enhancement was achieved 33% at Re = 1.15 × 105 for fuel rod with three-dimensional surface roughness using 2.0 vol% nanofluids compared to DI-water.


2019 ◽  
Vol 5 (3) ◽  
Author(s):  
Marcin Kopeć ◽  
Martina Malá

The ultrasonic (UT) measurements have a long history of utilization in the industry, also in the nuclear field. As the UT transducers are developing with the technology in their accuracy and radiation resistance, they could serve as a reliable tool for measurements of small but sensitive changes for the nuclear fuel assembly (FA) internals as the fuel rods are. The fuel rod bow is a phenomenon that may bring advanced problems as neglected or overseen. The quantification of this issue state and its probable progress may help to prevent the safety-related problems of nuclear reactors to occur—the excessive rod bow could, in the worst scenario, result in cladding disruption and then the release of actinides or even fuel particles to the coolant medium. Research Centre Rez has developed a tool, which could serve as a complementary system for standard postirradiation inspection programs for nuclear fuel assemblies. The system works in a contactless mode and reveals a 0.1 mm precision of measurements in both parallel (toward the probe) and perpendicular (sideways against the probe) directions.


Author(s):  
Rama Subba Reddy Gorla

Heat transfer from a nuclear fuel rod bumper support was computationally simulated by a finite element method and probabilistically evaluated in view of the several uncertainties in the performance parameters. Cumulative distribution functions and sensitivity factors were computed for overall heat transfer rates due to the thermodynamic random variables. These results can be used to identify quickly the most critical design variables in order to optimize the design and to make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in heat transfer and to the identification of both the most critical measurements and the parameters.


Author(s):  
Marco Amabili ◽  
Prabakaran Balasubramanian ◽  
Giovanni Ferrari ◽  
Stanislas Le Guisquet ◽  
Kostas Karazis ◽  
...  

In Pressurized Water Reactors (PWR), fuel assemblies are composed of fuel rods, long slender tubes filled with uranium pellets, bundled together using spacer grids. These structures are subjected to fluid-structure interactions, due to the flowing coolant surrounding the fuel assemblies inside the core, coupled with large-amplitude vibrations in case of external seismic excitation. Therefore, understanding the non-linear response of the structure and, particularly, its dissipation, is of paramount importance for the choice of safety margins. To model the nonlinear dynamic response of fuel rods, the identification of nonlinear stiffness and damping parameters is required. The case of a single fuel rod with clamped-clamped boundary conditions was investigated by applying harmonic excitation at various force levels. Different configurations were implemented testing the fuel rod in air and in still water; the effect of metal pellets simulating nuclear fuel pellets inside the rods was also recorded. Non-linear parameters were extracted from some of the experimental response curves by means of a numerical tool based on the harmonic balance method. The axisymmetric geometry of fuel rods resulted in the presence of a one-to-one internal resonance phenomenon, which has to be taken into account modifying accordingly the numerical identification tool. The internal motion of fuel pellets is a cause of friction and impacts, complicating further the linear and non-linear dynamic behavior of the system. An increase of the equivalent viscous-based modal damping with excitation amplitude is often shown during geometrically non-linear vibrations, thus confirming previous experimental findings in the literature.


Sign in / Sign up

Export Citation Format

Share Document