Brachial artery diameter measurement: A tool to simplify non-invasive vascular assessment

2012 ◽  
Vol 22 (1) ◽  
pp. 8-13 ◽  
Author(s):  
T. Montalcini ◽  
G. Gorgone ◽  
C. Gazzaruso ◽  
S. Romeo ◽  
D. Bosco ◽  
...  
2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
L Rotheudt ◽  
E Moritz ◽  
M Markus ◽  
H Voelzke ◽  
N Friedrich ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Introduction  Sphingosine-1-phosphate (S1P) is a lipid mediator of the immune system and vascular bed. However, cross-sectional analyses of S1P and parameters of vascular health in the population are sparse. Purpose  We explored the relation between S1P concentrations and several parameters of vascular health, i.e. ankle-brachial index (ABI), carotid intima-media thickness (cIMT), presence of carotid atherosclerotic plaques/stenosis, brachial artery flow-mediated dilation (FMD) as well as aortic wall thickness (AWT). Methods S1P was measured by liquid chromatography-tandem mass spectrometry in the population-based Study of Health in Pomerania (SHIP-TREND-0). ABI was calculated as the ratio of systolic blood pressure in arms and ankles. For cIMT, the distance between the lumen-intima and media-adventitia interfaces in longitudinal scans were measured. Carotid plaques were defined as a focal protrusion of the carotid vessel wall. Carotid stenosis was assessed with Doppler ultrasonography. FMD was evaluated by measuring the increase in brachial artery diameter after transient forearm ischemia. AWT was assessed by Magnetic Resonance Imaging.  Subjects with cancer, severe renal insufficiency, previous myocardial infarction and extreme values for S1P (< 1st and > 99th percentile) were excluded. Sex stratified linear regression models adjusted for age, smoking, waist-to-hip ratio and platelets were used to assess the relation between S1P and vascular disease parameters. Results A total of n = 3,643 participants (48% male, median age 51, 25th and 75th percentile 39 and 63 years) could be included in the analyses. The median S1P concentration was 0.788 µM (25th and 75th percentile 0.679 and 0.906, respectively). In men a 1 standard deviation higher S1P was associated with a significantly greater cIMT (β: 0.0057 95% confidence interval [CI]: 0.00027 to 0.0112 mm; p = 0.0396) and a lower ABI (β: -0.0090 (95% confidence interval [CI]: -0.0153 to -0.0029; p = 0.0038. In women S1P was significantly associated with cIMT (β: 0.0044 95% confidence interval [CI]: 0.0001 to 0.0086 mm; p = 0.0445) while no significant association was found for the relation of S1P with ABI. For both men and women S1P was not associated with FMD, the presence of carotid plaques/stenosis and AWT. Conclusions We found that S1P concentrations were positively related to a thicker cIMT in both sexes and lower ABI values in men. There was no association of S1P with any of the other vascular markers of interest. Future studies need to validate our results in other populations.


2006 ◽  
Vol 110 (4) ◽  
pp. 475-482 ◽  
Author(s):  
Mikko J. Järvisalo ◽  
Laura Jartti ◽  
Jukka Marniemi ◽  
Tapani Rönnemaa ◽  
Jorma S. A. Viikari ◽  
...  

Brachial artery FMD (flow-mediated dilatation) is widely used as a marker of systemic arterial endothelial function. FMD, however, shows considerable 25% day-to-day variation that hinders its clinical use. The reasons for this variability are poorly characterized. Therefore the present study was designed to clarify factors responsible for the hourly variation in endothelial function, including consuming a low-fat meal and circadian rhythms in endogenous hormonal levels. Brachial artery FMD, along with serum glucose, triacylglycerols (triglycerides) and levels of several hormones were measured six times per day on two separate days 1 week apart. On one day, the subjects (healthy males: n=12, mean age, 24 years) ate a light breakfast and a standardized lunch (23.5% fat, 48.7% carbohydrate and 27.8% protein). On the other day, they had a similar breakfast after which they fasted. Postprandial FMD values (both after breakfast and after lunch) were similar to baseline FMD. FMD showed a 28% hourly variation and 27% weekly variation. Variation in plasma levels of insulin (P=0.02) associated negatively and DHPG (3,4-dihydroxyphenylglycol) (P=0.001), a marker of sympathetic nervous activation, associated positively with variation in FMD. The effects of DHPG and insulin on FMD were independent of changes in baseline brachial artery diameter, although DHPG was also inversely associated with baseline diameter. Eating a regular low-fat meal does not have any measurable effects on brachial artery endothelial function. These data suggest that strict requirements for fasting conditions may be unnecessary when measuring peripheral endothelial function using the ultrasound technique. Circadian variation in serum insulin and sympathetic tone are physiological determinants of endothelial function.


2006 ◽  
Vol 290 (4) ◽  
pp. H1446-H1453 ◽  
Author(s):  
Kenneth S. Dyson ◽  
J. Kevin Shoemaker ◽  
Richard L. Hughson

We tested the hypothesis that flow-mediated dilation (FMD) of the brachial artery would be impaired by acute increases in sympathetic nervous system activity (SNA) in models where similar peak shear stress stimulus was achieved by varying the duration of forearm muscle ischemia. Eleven healthy young men were studied under four different conditions, each with its own control: lower body suction (LBS), cold pressor test (CPT), mental arithmetic task (MAT), and activation of muscle chemoreflex (MCR). The duration of ischemia before observation of FMD by ultrasound imaging was 5 min each for control, LBS, and CPT; 3 min for MAT; and 2-min for MCR. Peak shear rate was not different between control and any of the SNA conditions, although total shear in the first minute was reduced in MAT. MCR was the only condition in which brachial artery vasoconstriction was observed before forearm occlusion [4.38 (SD 0.53) vs. control 4.60 (SD 0.53) mm, P < 0.05]; however, diameter increased to the same absolute value as that of the control, so the percent FMD was greater for MCR [9.85 (SD 2.33) vs. control 5.29 (SD 1.50)%]. Blunting of the FMD response occurred only in the CPT model [1.51 (SD 1.20)%]. During SNA, the increase in plasma cortisol from baseline was significant only for MCR; the increase in plasma norepinephrine was significant for MCR, LBS, and CPT; and the increase in epinephrine was significant only for MCR. These results showed that the four models employed to achieve increases in SNA had different effects on baseline brachial artery diameter and that blunted FMD is not a general response to increased SNA.


2008 ◽  
Vol 105 (1) ◽  
pp. 282-292 ◽  
Author(s):  
K. E. Pyke ◽  
J. A. Hartnett ◽  
M. E. Tschakovsky

The purpose of this study was to determine the dynamic characteristics of brachial artery dilation in response to step increases in shear stress [flow-mediated dilation (FMD)]. Brachial artery diameter (BAD) and mean blood velocity (MBV) (Doppler ultrasound) were obtained in 15 healthy subjects. Step increases in MBV at two shear stimulus magnitudes were investigated: large (L; maximal MBV attainable), and small (S; MBV at 50% of the large step). Increase in shear rate (estimate of shear stress: MBV/BAD) was 76.8 ± 15.6 s−1 for L and 41.4 ± 8.7 s−1 for S. The peak %FMD was 14.5 ± 3.8% for L and 5.7 ± 2.1% for S ( P < 0.001). Both the L (all subjects) and the S step trials (12 of 15 subjects) elicited a biphasic diameter response with a fast initial phase (phase I) followed by a slower final phase. Relative contribution of phase I to total FMD when two phases occurred was not sensitive to shear rate magnitude ( r2 = 0.003, slope P = 0.775). Parameters quantifying the dynamics of the FMD response [time delay (TD), time constant (τ)] were also not sensitive to shear rate magnitude for both phases (phase I: TD r2 = 0.03, slope P = 0.376, τ r2 = 0.04, slope P = 0.261; final phase: TD r2 = 0.07, slope P = 0.169, τ r2 = 0.07, slope P = 0.996). These data support the existence of two distinct mechanisms, or sets of mechanisms, in the human conduit artery FMD response that are proportionally sensitive to shear stimulus magnitude and whose dynamic response is not sensitive to shear stimulus magnitude.


2008 ◽  
Vol 294 (4) ◽  
pp. H1833-H1839 ◽  
Author(s):  
S. C. Newcomer ◽  
C. L. Sauder ◽  
N. T. Kuipers ◽  
M. H. Laughlin ◽  
C. A. Ray

Shear rate is significantly lower in the superficial femoral compared with the brachial artery in the supine posture. The relative shear rates in these arteries of subjects in the upright posture (seated and/or standing) are unknown. The purpose of this investigation was to test the hypothesis that upright posture (seated and/or standing) would produce greater shear rates in the superficial femoral compared with the brachial artery. To test this hypothesis, Doppler ultrasound was used to measure mean blood velocity (MBV) and diameter in the brachial and superficial femoral arteries of 21 healthy subjects after being in the supine, seated, and standing postures for 10 min. MBV was significantly higher in the brachial compared with the superficial femoral artery during upright postures. Superficial femoral artery diameter was significantly larger than brachial artery diameter. However, posture had no significant effect on either brachial or superficial femoral artery diameter. The calculated shear rate was significantly greater in the brachial (73 ± 5, 91 ± 11, and 97 ± 13 s−1) compared with the superficial femoral (53 ± 4, 39 ± 77, and 44 ± 5 s−1) artery in the supine, seated, and standing postures, respectively. Contrary to our hypothesis, our current findings indicate that mean shear rate is lower in the superficial femoral compared with the brachial artery in the supine, seated, and standing postures. These findings of lower shear rates in the superficial femoral artery may be one mechanism for the higher propensity for atherosclerosis in the arteries of the leg than of the arm.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Keiichiro Yoshinaga ◽  
Yuuki Tomiyama ◽  
Satoshi Fujii ◽  
Saori Nishio ◽  
Noriki Ochi ◽  
...  

Introduction: Simple vascular function measurements are desirable for atherosclerosis risk assessments. Recently, we developed a novel modality of automated oscillometric method to measure a brachial artery’s vascular elastic modulus (V E ) and reported that V E is uninfluenced by blood pressure. Galectin-3 (Gal-3) expressed in endothelial cells regulates vascular fibrosis and is a molecular determinant of vascular stiffness. Hypothesis: We aimed to clarify whether V E selectively correlates with marker of vascular stiffness in chronic kidney disease (CKD). Methods: 12 moderate-to-severe CKD pts (mean eGFR 25.9±23.5 mL/min/1.73m 2 ) and 15 controls were studied. Rest V E in brachial artery was measured by new automated oscillometric detector. V E was defined as follows [VE =ΔPressure/ (100XΔarea/Area) mmHg/%]. Using ultrasound, the brachial artery diameter at rest and during reactive hyperemia [flow mediated dilatation (FMD) with endothelial-dependent dilatation] was measured. Gal-3 and interleukin-6 (IL-6), a representative inflammatory marker, were measured by enzyme-linked immune assay. Results: CKD had lower FMD (4.86±3.37 vs 9.05±2.98 %, P=0.003) and had attenuated V E than control (1.08±0.26 vs 0.83±0.17 mmHg/%, P=0.002). CKD had higher IL-6 (0.67±0.29 vs 0.29±0.33 pg/mL, P=0.003) and higher Gal-3 (20.0±12.4 vs. 5.84±2.83 pg/mL, P<0.001). V E was negatively correlated with %FMD (r=-0.46, P=0.015) and correlated with Gal-3 (r=0.40, P=0.036) but not in IL-6 (r=0.21, P=0.28). Conclusions: Attenuated vascular elasticity detected by this novel approach closely correlated with increase in Gal-3 and reduced FMD in CKD. This may indicate that the attenuated vascular elasticity selectively reflects vascular fibrosis as evidenced by Gal-3 and subsequent endothelial responses to vascular stiffness. Thus, this oscillometric measurement may be useful for detecting vascular fibrosis information and dysfunction in endothelium level.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Daniela K Andaku ◽  
Bruno Archiza ◽  
Flavia C Caruso ◽  
Katiany T Zangrando ◽  
Humberto Lanzotti ◽  
...  

Background: Recent evidence has indicated a ceiling to the benefits of exercise training that, if chronically surpassed, may have a negative effect on cardiac function. Conversely, improvements in peripheral arterial function may respond positively to chronic high volume training. Recent studies have shown that flow-mediated dilation (FMD) is decreased immediately after maximal exercise in sedentary subjects and is unaltered in subjects who participate in moderate volume exercise. We investigated the acute effects of maximal exercise on vascular function of elite female athletes with a high-volume training history. Methods: Fifteen elite female soccer players (mean age: 22.1 ± 4.4 years; BMI: 20.76 ± 1.75 kg/m2), with a high volume/intensity training history (4-6 hours per day) were evaluated. Subjects underwent maximal cardiopulmonary exercise testing (CPX) on a treadmill (VO2max 41.1 ± 3.9 mLO2•kg-1•min-1). Brachial artery FMD was determined using high-resolution ultrasound before and immediately after CPX. Flow velocity were measured at baseline (BSL) and during reactive hyperemia (RH) both prior to and following exercise. Results: Brachial artery diameter increased during RH before (3.42 ± 0.38mm vs. 3.03 ± 0.28mm, p<0.001) and after CPX (3.61 ± 0.44mm vs. 3.10 ± 0.37mm, p<0.001). Importantly, FMD was increased following CPX compared to BSL (16.86 ± 9.04% vs. 12.95 ± 7.03%, p=0.027). There was significant increase in peak flow velocity during RH before (135.28 ± 42.19cm/s vs. 79.19 ± 28.14cm/s, p=0.001) and after CPX (139.15 ± 41.07cm/s vs. 87.64 ± 21.23cm/s, p<0.001) (Table). Conclusion: The results of the current study indicate that arterial function is improved following acute aerobic exercise in elite female athletes with a chronic high volume training history. These findings deviate from the emerging literature suggesting chronic high volume training may be detrimental to cardiovascular function in the long term.


2005 ◽  
Vol 98 (6) ◽  
pp. 2311-2315 ◽  
Author(s):  
Louise H. Naylor ◽  
Cara J. Weisbrod ◽  
Gerry O'Driscoll ◽  
Daniel J. Green

The purpose of this study was to establish valid indexes of conduit and resistance vessel structure in humans by using edge detection and wall tracking of high-resolution B-mode arterial ultrasound images, combined with synchronized Doppler waveform envelope analysis, to calculate conduit artery blood flow and diameter continuously across the cardiac cycle. Nine subjects aged 36.7 (9.2) yr underwent, on separate days, assessment of brachial artery blood flow and diameter response to 5-, 10-, and 15-min periods of forearm ischemia in the presence and absence of combined sublingual glyceryl trinitrate (GTN) administration. Two further sessions examined responses to ischemic exercise, one in combination with GTN. The peak brachial artery diameter was observed in response to the combination of ischemic exercise and GTN; a significant difference existed between resting brachial artery diameter and peak brachial artery diameter, indicating that resting diameter may be a poor measure of conduit vessel structure in vivo. Peak brachial artery flow was also observed in response to a combination of forearm ischemia exercise and GTN administration, the response being greater than that induced by periods of ischemia, GTN, or ischemic exercise alone. These data indicate that noninvasive indexes of conduit and resistance vessel structure can be simultaneously determined in vivo in response to a single, brief, stimulus and that caution should be applied in using resting arterial diameter as a surrogate measure of conduit artery structure in vivo.


Sign in / Sign up

Export Citation Format

Share Document