High fat diets for weight loss among subjects with elevated fasting glucose levels: The PREDIMED study

2020 ◽  
Vol 18 ◽  
pp. 100210
Author(s):  
Mads F. Hjorth ◽  
Dolores Corella ◽  
Arne Astrup ◽  
Miguel Ruiz-Canela ◽  
Jordi Salas-Salvado ◽  
...  
2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Teuta Gjuladin-Hellon ◽  
Ian Davies ◽  
Jackie Fealey ◽  
Alexander Montasem ◽  
Katie Lane

AbstractOur recent study (1) showed that the amount of dietary carbohydrates in obesity interventions has differential effects on cardiovascular risk markers (CVM) and effects magnitude depends on intervention duration. Very-low carbohydrate high-fat diets (VLCD) were superior in ameliorating lipid markers compared to high-carbohydrate low-fat diets (LFD).We updated our systematic review and meta-analysis to include long-term effects of VLCD (< 50 g /day) on weight, glucose, total cholesterol, insulin and blood pressure (BP) among overweight/obese adults in comparison to LFD.Medline, PubMed, Cochrane Central, and CINAHLPlus were searched to identify large (n > 100) randomised controlled trials (RCT) with duration ≥ 6 months. Risk of bias, a random effects model and subgroup analyses based on duration of follow-up were performed using Review Manager. Results were reported according to PRISMA.Four open label RCT (n = 723; 362 VLCD; 361 LFD) with some form of behavioral intervention and duration 6–24 months were identified. VLCD showed more favorable effects on diastolic BP at 6 months (-1.96; 95%CI, -2.99 to 00.93; P = 0.0002) and 24 months (-2.69; 95%CI, -4.87 to -0.51; P = 0.001), near significant level at 12 months (-1.79; 95%CI, -3.56 to 0.04; P = 0.05) and an overall total favourable effect (-1.98; 95%CI, -2.73 to -1.22). The decrease in systolic BP was greater among VLCD for the whole period and the overall total effect reached the level of significance (-1.76; 95%CI, -3.56 to 0.04; P = 0.05). VLCD showed beneficial effect on total cholesterol level at 6 and 12 months (-0.01 mmol/L; 95%CI, -0.01 to –0.00; P = 0.002 and -0.01 mmol/L; 95%CI, -0.01 to –0.00; P = 0.005, respectively). The mean changes in weight, and fasting glucose and insulin levels revealed non-significant differences between both diets at any measured time, although these parameters decreased within both groups compared to baseline.VLCD led to significant total weighted mean decrease of diastolic BP and near significant decrease of systolic BP independent of changes in body weight, fasting glucose or insulin levels. The present data on decreased levels of diastolic BP and total cholesterol, combined with our recently published results on increased HDL-cholesterol, decreased triglycerides and no significant effect on LDL-cholesterol (1) provide evidence that VLCD are superior to LFD in improving traditional CVM in longer term.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1251
Author(s):  
Yuqing Tan ◽  
Christina C. Tam ◽  
Matt Rolston ◽  
Priscila Alves ◽  
Ling Chen ◽  
...  

Quercetin is a flavonoid that has been shown to have health-promoting capacities due to its potent antioxidant activity. However, the effect of chronic intake of quercetin on the gut microbiome and diabetes-related biomarkers remains unclear. Male C57BL/6J mice were fed HF or HF supplemented with 0.05% quercetin (HFQ) for 6 weeks. Diabetes-related biomarkers in blood were determined in mice fed high-fat (HF) diets supplemented with quercetin. Mice fed the HFQ diet gained less body, liver, and adipose weight, while liver lipid and blood glucose levels were also lowered. Diabetes-related plasma biomarkers insulin, leptin, resistin, and glucagon were significantly reduced by quercetin supplementation. In feces, quercetin supplementation significantly increased the relative abundance of Akkermansia and decreased the Firmicutes/Bacteroidetes ratio. The expression of genes Srebf1, Ppara, Cyp51, Scd1, and Fasn was downregulated by quercetin supplementation. These results indicated that diabetes biomarkers are associated with early metabolic changes accompanying obesity, and quercetin may ameliorate insulin resistance.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Chrisabelle C. Mefferd ◽  
Shrikant S. Bhute ◽  
Jacqueline R. Phan ◽  
Jacob V. Villarama ◽  
Dung M. Do ◽  
...  

ABSTRACT Clostridioides difficile (formerly Clostridium difficile) infection (CDI) can result from the disruption of the resident gut microbiota. Western diets and popular weight-loss diets drive large changes in the gut microbiome; however, the literature is conflicted with regard to the effect of diet on CDI. Using the hypervirulent strain C. difficile R20291 (RT027) in a mouse model of antibiotic-induced CDI, we assessed disease outcome and microbial community dynamics in mice fed two high-fat diets in comparison with a high-carbohydrate diet and a standard rodent diet. The two high-fat diets exacerbated CDI, with a high-fat/high-protein, Atkins-like diet leading to severe CDI and 100% mortality and a high-fat/low-protein, medium-chain-triglyceride (MCT)-like diet inducing highly variable CDI outcomes. In contrast, mice fed a high-carbohydrate diet were protected from CDI, despite the high levels of refined carbohydrate and low levels of fiber in the diet. A total of 28 members of the Lachnospiraceae and Ruminococcaceae decreased in abundance due to diet and/or antibiotic treatment; these organisms may compete with C. difficile for amino acids and protect healthy animals from CDI in the absence of antibiotics. Together, these data suggest that antibiotic treatment might lead to loss of C. difficile competitors and create a favorable environment for C. difficile proliferation and virulence with effects that are intensified by high-fat/high-protein diets; in contrast, high-carbohydrate diets might be protective regardless of the source of carbohydrate or of antibiotic-driven loss of C. difficile competitors. IMPORTANCE The role of Western and weight-loss diets with extreme macronutrient composition in the risk and progression of CDI is poorly understood. In a longitudinal study, we showed that a high-fat/high-protein, Atkins-type diet greatly exacerbated antibiotic-induced CDI, whereas a high-carbohydrate diet protected, despite the high monosaccharide and starch content. Our study results, therefore, suggest that popular high-fat/high-protein weight-loss diets may enhance CDI risk during antibiotic treatment, possibly due to the synergistic effects of a loss of the microorganisms that normally inhibit C. difficile overgrowth and an abundance of amino acids that promote C. difficile overgrowth. In contrast, a high-carbohydrate diet might be protective, despite reports on the recent evolution of enhanced carbohydrate metabolism in C. difficile.


2000 ◽  
Vol 25 (6) ◽  
pp. 495-523 ◽  
Author(s):  
David J. Dyck

Although there remains controversy regarding the role of macronutrient balance in the etiology of obesity, the consumption of high-fat diets appears to be strongly implicated in its development. Evidence that fat oxidation does not adjust rapidly to acute increases in dietary fat, as well as a decreased capacity to oxidize fat in the postprandial state in the obese, suggest that diets high in fat may lead to the accumulation of fat stores. Novel data is also presented suggesting that in rodents, high-fat diets may lead to the development of leptin resistance in skeletal muscle and subsequent accumulations of muscle triacylglycerol. Nevertheless, several current fad diets recommend drastically reduced carbohydrate intake, with a concurrent increase in fat content. Such recommendations are based on the underlying assumption that by reducing circulating insulin levels, lipolysis and lipid oxidation will be enhanced and fat storage reduced. Numerous supplements are purported to increase fat oxidation (carnitine, conjugated linoleic acid), increase metabolic rate (ephedrine, pyruvate), or inhibit hepatic lipogenesis (hydroxycitrate). All of these compounds are currently marketed in supplemental form to increase weight loss, but few have actually been shown to be effective in scientific studies. To date, there is little or no evidence supporting that carnitine or hydroxycitrate supplementation are of any value for weight loss in humans. Supplements such as pyruvate have been shown to be effective at high dosages, but there is little mechanistic information to explain its purported effect or data to indicate its effectiveness at lower dosages. Conjugated linoleic acid has been shown to stimulate fat utilization and decrease body fat content in mice but has not been tested in humans. The effects of ephedrine, in conjunction with methylxanthines and aspirin, in humans appears unequivocal but includes various cardiovascular side effects. None of these compounds have been tested for their effectiveness or safety over prolonged periods of time. Key words: carnitine, conjugated linoleic acid, ephedrine, pyruvate, hydroxycitrate


1958 ◽  
Vol 193 (3) ◽  
pp. 499-504 ◽  
Author(s):  
K. J. Carpenter ◽  
Jean Mayer

In our colony, yellow obese mice were longer than nonobese littermates and yellow males were heavier than yellow females. Weight gain was greatest on high fat diets. If the yellow mice were given a possibility to exercise (activity cages), they lost weight. Resistance to cold was good. Fasted blood glucose levels were normal, fed levels frequently elevated in males. Yellow male and female mice showed a degree of insulin resistance; yellow males showed a marked hyperglycemic response to growth hormone, ACTH, cortisone, and glucagon. Blood total lipids were elevated in yellow mice, with the females exhibiting hypercholesterolemia. As in other forms of ‘metabolic’ obesity, blood ketones were decreased by an 18 hours fast.


2011 ◽  
Vol 300 (1) ◽  
pp. E65-E76 ◽  
Author(s):  
Maximilian Bielohuby ◽  
Dominik Menhofer ◽  
Henriette Kirchner ◽  
Barbara J. M. Stoehr ◽  
Timo D. Müller ◽  
...  

Low-carbohydrate/high-fat diets (LC-HFDs) in rodent models have been implicated with both weight loss and as a therapeutic approach to treat neurological diseases. LC-HFDs are known to induce ketosis; however, systematic studies analyzing the impact of the macronutrient composition on ketosis induction and weight loss success are lacking. Male Wistar rats were pair-fed for 4 wk either a standard chow diet or one of three different LC-HFDs, which only differed in the relative abundance of fat and protein (percentages of fat/protein in dry matter: LC-75/10; LC-65/20; LC-55/30). We subsequently measured body composition by nuclear magnetic resonance (NMR), analyzed blood chemistry and urine acetone content, evaluated gene expression changes of key ketogenic and gluconeogenic genes, and measured energy expenditure (EE) and locomotor activity (LA) during the first 4 days and after 3 wk on the respective diets. Compared with chow, rats fed with LC-75/10, LC-65/20, and LC-55/30 gained significantly less body weight. Reductions in body weight were mainly due to lower lean body mass and paralleled by significantly increased fat mass. Levels of β-hydroxybutyate were significantly elevated feeding LC-75/10 and LC-65/20 but decreased in parallel to reductions in dietary fat. Acetone was about 16-fold higher with LC-75/10 only ( P < 0.001). In contrast, rats fed with LC-55/30 were not ketotic. Serum fibroblast growth factor-21, hepatic mRNA expression of hydroxymethylglutaryl-CoA-lyase, peroxisome proliferator-activated receptor-γ coactivator-1α, and peroxisome proliferator-activated receptor-γ coactivator-1β were increased with LC-75/10 only. Expression of phospho enolpyruvate carboxykinase and glucose-6-phosphatase was downregulated by 50–70% in LC-HF groups. Furthermore, EE and LA were significantly decreased in all groups fed with LC-HFDs after 3 wk on the diets. In rats, the absence of dietary carbohydrates per se does not induce ketosis. LC-HFDs must be high in fat, but also low in protein contents to be clearly ketogenic. Independent of the macronutrient composition, LC-HFD-induced weight loss is not due to increased EE and LA.


1994 ◽  
Vol 71 (06) ◽  
pp. 755-758 ◽  
Author(s):  
E M Bladbjerg ◽  
P Marckmann ◽  
B Sandström ◽  
J Jespersen

SummaryPreliminary observations have suggested that non-fasting factor VII coagulant activity (FVII:C) may be related to the dietary fat content. To confirm this, we performed a randomised cross-over study. Seventeen young volunteers were served 2 controlled isoenergetic diets differing in fat content (20% or 50% of energy). The 2 diets were served on 2 consecutive days. Blood samples were collected at 8.00 h, 16.30 h and 19.30 h, and analysed for triglycerides, FVII coagulant activity using human (FVII:C) or bovine thromboplastin (FVII:Bt), and FVII amidolytic activity (FVIPAm). The ratio FVII:Bt/FVII:Am (a measure of FVII activation) increased from fasting levels on both diets, but most markedly on the high-fat diet. In contrast, FVII: Am (a measure of FVII protein) tended to decrease from fasting levels on both diets. FVII:C rose from fasting levels on the high-fat diet, but not on the low-fat diet. The findings suggest that high-fat diets increase non-fasting FVII:C, and consequently may be associated with increased risk of thrombosis.


Sign in / Sign up

Export Citation Format

Share Document