Tunable graphene quadrupole dark mode based ultranarrow Fano resonance in asymmetric hybrid metamaterial

2022 ◽  
pp. 127927
Author(s):  
Qi Zhu ◽  
Yuting Chen ◽  
Jianhua Huang ◽  
Zhong Huang ◽  
Wei Du ◽  
...  
Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2408
Author(s):  
Zhendong Yan ◽  
Zhixing Zhang ◽  
Wei Du ◽  
Wenjuan Wu ◽  
Taoping Hu ◽  
...  

We theoretically investigate multiple Fano resonances in an asymmetric hybrid graphene–metal metamaterial. The multiple Fano resonances emerge from the coupling of the plasmonic narrow bonding and antibonding modes supported by an in-plane graphene nanoribbon dimer with the broad magnetic resonance mode supported by a gold split-ring resonator. It is found that the Fano resonant mode with its corresponding dark mode of the antibonding mode in the in-plane graphene nanoribbon dimer is only achieved by structural symmetry breaking. The multiple Fano resonances can be tailored by tuning the structural parameters and Fermi levels. Active control of the multiple Fano resonances enables the proposed metamaterial to be widely applied in optoelectronic devices such as tunable sensors, switches, and filters.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1583
Author(s):  
Hongyan Yang ◽  
Yupeng Chen ◽  
Mengyin Liu ◽  
Gongli Xiao ◽  
Yunhan Luo ◽  
...  

We propose a high quality-factor (Q-factor) multi-Fano resonance hybrid metamaterial waveguide (HMW) sensor. By ingeniously designing a metal/dielectric hybrid waveguide structure, we can effectively tailor multi-Fano resonance peaks’ reflectance spectrum appearing in the visible wavelength range. In order to balance the high Q-factor and the best Fano resonance modulation depth, numerical calculation results demonstrated that the ultra-narrow linewidth resolution, the single-side quality factor, and Figure of Merit (FOM) can reach 1.7 nm, 690, and 236, respectively. Compared with the reported high Q-value (483) in the near-infrared band, an increase of 30% is achieved. Our proposed design may extend the application of Fano resonance in HMW from mid-infrared, terahertz band to visible band and have important research value in the fields of multi-wavelength non-labeled biosensing and slow light devices.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 268 ◽  
Author(s):  
Jianfa Zhang ◽  
Qilin Hong ◽  
Jinglan Zou ◽  
Yuwen He ◽  
Xiaodong Yuan ◽  
...  

Fano resonances in nanostructures have attracted widespread research interests in the past few years for their potential applications in sensing, switching and nonlinear optics. In this paper, a mid-infrared Fano resonance in a hybrid metal-graphene metamaterial is studied. The hybrid metamaterial consists of a metallic grid enclosing with graphene nanodisks. The Fano resonance arises from the coupling of graphene and metallic plasmonic resonances and it is sharper than plasmonic resonances in pure graphene nanostructures. The resonance strength can be enhanced by increasing the number of graphene layers. The proposed metamaterial can be employed as a high-performance mid-infrared plasmonic sensor with an unprecedented sensitivity of about 7.93 μm/RIU and figure of merit (FOM) of about 158.7.


2018 ◽  
Vol 8 (12) ◽  
pp. 2672 ◽  
Author(s):  
Chenxi Liu ◽  
Song Zha ◽  
Peiguo Liu ◽  
Cheng Yang ◽  
Qihui Zhou

A terahertz metamaterial is presented and numerically investigated to achieve tunable electromagnetically induced transparency (EIT) for slow light. The unit cell consists of cut-wire pairs and U-shaped ring resonators with graphene strips placed between the metal film and the SiO2/Si substrate. Through bright-dark mode coupling, the radiative resonance induced by the U-shaped ring is suppressed, and then the typical EIT effect is realized. The transparency window and the accompanied group delay can be electrically manipulated with different Fermi energy of the graphene. By analyzing the surface distribution, the underlying tuning mechanism of this hybrid metamaterial is investigated in detail. Moreover, the transparency peak decreases slightly with the increasing strip width of the graphene layer but completely vanishes as the strip width exceeds the length of the covered U-shaped ring. The influence of the critical index of graphene quality, i.e., carrier mobility on the EIT effect, is considered. The results of this study may provide valuable guidance in designing and analyzing tunable EIT structures based on a metal-graphene hybrid structure for slow light purposes.


2020 ◽  
Vol 28 (20) ◽  
pp. 30141
Author(s):  
Tao Fu ◽  
Fei Liu ◽  
Yinbing An ◽  
Qi Li ◽  
Gong-li Xiao ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuwen He ◽  
Jianfa Zhang ◽  
Wei Xu ◽  
Chucai Guo ◽  
Ken Liu ◽  
...  

AbstractElectromagnetically induced transparency (EIT) arises from the coherent coupling and interference between a superradiant (bright) mode in one resonator and a subradiant (dark) mode in an adjacent resonator. Generally, the two adjacent resonators are structurally or spatially asymmetric. Here, by numerical simulation, we demonstrate that tunable EIT can be induced by graphene ribbon pairs without structurally or spatially asymmetry. The mechanism originates from the fact that the resonate frequencies of the bright mode and the dark mode supported by the symmetrical graphene ribbon pairs can be respectively tuned by electrical doping levels, and when they are tuned to be equal the graphene plasmon coupling and interference occurs. The EIT in symmetrical nanostructure which avoids deliberately breaking the element symmetry in shape as well as in size facilitates the design and fabrication of the structure. In addition, the work regarding to EIT in the structurally symmetric could provide a fresh contribution to a more comprehensive physical understanding of Fano resonance.


2019 ◽  
Vol 36 (9) ◽  
pp. 2461 ◽  
Author(s):  
Yongliang Liu ◽  
Wenqian Liu ◽  
Sanmin Shen ◽  
Qiulin Tan ◽  
Jijun Xiong ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuangmei Zhu ◽  
Chunzhen Fan ◽  
Erjun Liang ◽  
Pei Ding ◽  
Xiguang Dong ◽  
...  

AbstractA new tactic that using Ag nanorice trimer as surface-enhanced hyper Raman scattering substrate is proposed for realizing maximum signal enhancement. In this paper, we numerically simulate and theoretically analyze the optical properties of the nanorice trimer consisting of two short nanorices and a long nanorice. The Ag nanorice trimer can excite Fano resonance at optical frequencies based on the strong interaction between the bright and the dark mode. The bright mode is attributed to the first longitudinal resonance of the short nanorice pair, while the dark mode originates from the third longitudinal mode resonance of the long nanorice. The electric field distributions demonstrate that the two resonances with the largest field strength correspond to the first-order resonance of the long nanorice and the Fano resonance of the trimer, respectively. Two plasmon resonances with maximum electromagnetic field enhancements and same spatial hot spot regions can match spectrally with the pump and second-order Stokes beams of hyper Raman scattering, respectively, through reasonable design of the trimer structure parameters. The estimated enhancement factor of surface-enhanced hyper Raman scattering can achieve as high as 5.32 × 1013.


Author(s):  
Zilvinas Kancleris ◽  
Gediminas Slekas ◽  
Andrius Kamarauskas ◽  
Dalius Seliuta
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document