Investigation into the effect of overlap factors and process parameters on surface roughness and machined depth during micro-turning process with Nd:YAG laser

2014 ◽  
Vol 60 ◽  
pp. 90-98 ◽  
Author(s):  
G. Kibria ◽  
B. Doloi ◽  
B. Bhattacharyya
Author(s):  
G. Kibria ◽  
B. Doloi ◽  
B. Bhattacharyya

The present paper addresses an investigation on the effect of process parameters during Nd:YAG laser micro-turning operation of different grade of alumina (Al2O3) ceramic materials. Considering different levels of various process parameters i.e. laser beam average power, pulse frequency, workpiece rotational speed and Y feed rate, Taguchi method based experimental design has been used to construct the set of experiments. The same set of experiments has been utilized to machine 10 mm diameter cylindrical workpiece made of different grades of Alumina ceramics i.e. K60 and K80. Surface roughness (Ra) and micro-turning depth deviation were considered as the process characteristics. Analysis of variance (ANOVA) test was performed for each grade of alumina ceramic to find out the significant process parameters during laser micro-turning process. The optimum process parameters settings for individual responses were obtained by analyzing the signal-to-noise (S/N) ratio. Mathematical models, which correlate the response and process variables, have been developed for all the grades of ceramics. Multi-objective optimization i.e. simultaneous minimization of surface roughness (Ra) and micro-turning depth deviation has been done through combined approach of Taguchi methodology and Grey Relational Analysis.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2998 ◽  
Author(s):  
Kubilay Aslantas ◽  
Mohd Danish ◽  
Ahmet Hasçelik ◽  
Mozammel Mia ◽  
Munish Gupta ◽  
...  

Micro-turning is a micro-mechanical cutting method used to produce small diameter cylindrical parts. Since the diameter of the part is usually small, it may be a little difficult to improve the surface quality by a second operation, such as grinding. Therefore, it is important to obtain the good surface finish in micro turning process using the ideal cutting parameters. Here, the multi-objective optimization of micro-turning process parameters such as cutting speed, feed rate and depth of cut were performed by response surface method (RSM). Two important machining indices, such as surface roughness and material removal rate, were simultaneously optimized in the micro-turning of a Ti6Al4V alloy. Further, the scanning electron microscope (SEM) analysis was done on the cutting tools. The overall results depict that the feed rate is the prominent factor that significantly affects the responses in micro-turning operation. Moreover, the SEM results confirmed that abrasion and crater wear mechanism were observed during the micro-turning of a Ti6Al4V alloy.


2011 ◽  
Vol 264-265 ◽  
pp. 1318-1323 ◽  
Author(s):  
G. Kibria ◽  
B. Sharma ◽  
B. Doloi ◽  
B. Bhattacharyya

Laser beam machining (LBM) is the most exciting thermal energy based non-contact type advanced material machining method to process almost whole range of materials. The laser microturning of ceramics are highly demanded in the present industries because of its wide and potential uses in various engineering fields such as automobile, electronics, aerospace, biomedical applications etc. The present paper addresses the basic experimental study of Nd:YAG laser microturning of advanced engineering cylindrical shaped ceramic material to explore the desired laser output responses i.e. depth of cut and surface roughness by varying laser micro-turning process parameters such as lamp current, pulse frequency and rotational speed of workpiece etc.


2021 ◽  
Vol 3 (1) ◽  
pp. 23-30
Author(s):  
Gerry Patriadicka ◽  
Erwansyah Iskak ◽  
Juanda -

A good level of surface roughness as one of the benchmarks for turning the workpiece is said to be of high quality. As a cutting tool, lathe chisels need free angles and exhaust angles according to the desired specifications. This study aims to determine the effect of variations in the size of the tool angle and how much free angle and exhaust angle are best used on the surface roughness of St 41 steel. The study was conducted using a lathe brand Bemato series 44376 with process parameters consisting of a spindle speed of 280 m /min, the infeed depth is 0.8 mm, and the infeed speed is 0.040 mm/rev. The research method used is an experimental method and the results of the turning process are measured the level of surface roughness using a surface roughness tester. Based on the results of the specimen measurements, it is found that there are differences in surface roughness produced by variations in the free angle (α) and exhaust angle (β). As for the lowest roughness value of the whole specimen turning process is in the turning process with variations in angle 6° and angle sudut 10° with a surface roughness value (Ra) of 2,555 m.


Sign in / Sign up

Export Citation Format

Share Document