Parametric Study and Optimization of Nd: YAG Laser Micro-Turning Process of Different Grade of Alumina Ceramics Based on Taguchi Methodology

Author(s):  
G. Kibria ◽  
B. Doloi ◽  
B. Bhattacharyya

The present paper addresses an investigation on the effect of process parameters during Nd:YAG laser micro-turning operation of different grade of alumina (Al2O3) ceramic materials. Considering different levels of various process parameters i.e. laser beam average power, pulse frequency, workpiece rotational speed and Y feed rate, Taguchi method based experimental design has been used to construct the set of experiments. The same set of experiments has been utilized to machine 10 mm diameter cylindrical workpiece made of different grades of Alumina ceramics i.e. K60 and K80. Surface roughness (Ra) and micro-turning depth deviation were considered as the process characteristics. Analysis of variance (ANOVA) test was performed for each grade of alumina ceramic to find out the significant process parameters during laser micro-turning process. The optimum process parameters settings for individual responses were obtained by analyzing the signal-to-noise (S/N) ratio. Mathematical models, which correlate the response and process variables, have been developed for all the grades of ceramics. Multi-objective optimization i.e. simultaneous minimization of surface roughness (Ra) and micro-turning depth deviation has been done through combined approach of Taguchi methodology and Grey Relational Analysis.

2016 ◽  
Vol 693 ◽  
pp. 1009-1014 ◽  
Author(s):  
Su Lin Chen ◽  
Bin Shen ◽  
Fang Hong Sun

This paper presents a study of the influence of cutting conditions (cutting velocity, feed, cutting depth and lubrication) on turning TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) titanium alloy. Taguchi methodology design was adopt for carrying out experiments. Turning process parameters such as cutting speed, feed rate and depth of cut were varied to study their effect on process responses such as cutting force (Ft), surface roughness (Ra) and temperature on cutting zones (T). Minimum quantity lubrication (MQL) technology was adopt to increase the lubricating and cooling effect. Meanwhile, CVD diamond coating was deposited on the cemented carbide insert to reduce its friction with workpiece and increase its wear resistance. From the analysis of orthogonal tests, depth of cut contributes the most for the main cutting force and cutting temperature, while feed rate had the most significant effect on surface roughness on the workpiece. MQL can reduce the cutting temperature at the cutting zones, especially for the uncoated cutting inserts whose temperature decreases by an average of 60~80°C. The cutting force, surface roughness and cutting temperature of CVD diamond coated inserts were all higher than those of uncoated tools, especially with MQL lubrication. Considering the cutting efficiency and cost, the optimal parameters in the turning process of TC11 for minimizing the cutting force, surface roughness and cutting temperature are obtained as Vc=115m/min, f=0.08mm, ap=0.5mm under MQL lubricating with uncoated cemented carbide as the cutting tool.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
V. Chengal Reddy ◽  
Thota Keerthi ◽  
T. Nishkala ◽  
G. Maruthi Prasad Yadav

AbstractSurface roughness and heat-affected zone (HAZ) are the important features which influence the performance of the laser-drilled products. Understanding the influence of laser process parameters on these responses and identifying the cutting conditions for simultaneous optimization of these responses are a primary requirement in order to improve the laser drilling performance. Nevertheless, no such contribution has been made in the literature during laser drilling of AISI 303 material. The aim of the present work is to optimize the surface roughness (Ra) and HAZ in fibre laser drilling of AISI 303 material using Taguchi-based grey relational analysis (GRA). From the GRA methodology, the recommended optimum combination of process parameters is flushing pressure at 30 Pa, laser power at 2000 W and pulse frequency at 1500 Hz for simultaneous optimization of Ra and HAZ, respectively. From analysis of variance, the pulse frequency is identified as the most influenced process parameters on laser drilling process performance.


2004 ◽  
Vol 471-472 ◽  
pp. 790-794 ◽  
Author(s):  
Li Fa Han ◽  
Wei Xia ◽  
Yuan Yuan Li ◽  
Wei Ping Chen

This paper presents an investigation on the surface roughness of burnished hypereutectic Al-Si alloy ¾ a widely used light-weight and wear resistant material in automobile, electric and aircraft industries. Based on the techniques of Taguchi, an orthogonal experiment plan with the analysis of variance (ANOVA) is performed and a second-order regressive mathematical model is established. Meanwhile, the influence of process parameters on surface roughness and its mechanism are discussed. From the experiments, it is found that burnishing process is effective to decrease surface roughness of hypereutectic Al-Si alloy components, in which, all input parameters have a significant effect on the surface roughness. To achieve a small surface roughness, the optimum process parameters are recommended.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2998 ◽  
Author(s):  
Kubilay Aslantas ◽  
Mohd Danish ◽  
Ahmet Hasçelik ◽  
Mozammel Mia ◽  
Munish Gupta ◽  
...  

Micro-turning is a micro-mechanical cutting method used to produce small diameter cylindrical parts. Since the diameter of the part is usually small, it may be a little difficult to improve the surface quality by a second operation, such as grinding. Therefore, it is important to obtain the good surface finish in micro turning process using the ideal cutting parameters. Here, the multi-objective optimization of micro-turning process parameters such as cutting speed, feed rate and depth of cut were performed by response surface method (RSM). Two important machining indices, such as surface roughness and material removal rate, were simultaneously optimized in the micro-turning of a Ti6Al4V alloy. Further, the scanning electron microscope (SEM) analysis was done on the cutting tools. The overall results depict that the feed rate is the prominent factor that significantly affects the responses in micro-turning operation. Moreover, the SEM results confirmed that abrasion and crater wear mechanism were observed during the micro-turning of a Ti6Al4V alloy.


2018 ◽  
Vol 5 (5) ◽  
pp. 13464-13471
Author(s):  
B. Singaravel ◽  
D.Prabhu Shankar ◽  
Lakshmi Prasanna

2011 ◽  
Vol 264-265 ◽  
pp. 1318-1323 ◽  
Author(s):  
G. Kibria ◽  
B. Sharma ◽  
B. Doloi ◽  
B. Bhattacharyya

Laser beam machining (LBM) is the most exciting thermal energy based non-contact type advanced material machining method to process almost whole range of materials. The laser microturning of ceramics are highly demanded in the present industries because of its wide and potential uses in various engineering fields such as automobile, electronics, aerospace, biomedical applications etc. The present paper addresses the basic experimental study of Nd:YAG laser microturning of advanced engineering cylindrical shaped ceramic material to explore the desired laser output responses i.e. depth of cut and surface roughness by varying laser micro-turning process parameters such as lamp current, pulse frequency and rotational speed of workpiece etc.


2021 ◽  
Vol 3 (1) ◽  
pp. 23-30
Author(s):  
Gerry Patriadicka ◽  
Erwansyah Iskak ◽  
Juanda -

A good level of surface roughness as one of the benchmarks for turning the workpiece is said to be of high quality. As a cutting tool, lathe chisels need free angles and exhaust angles according to the desired specifications. This study aims to determine the effect of variations in the size of the tool angle and how much free angle and exhaust angle are best used on the surface roughness of St 41 steel. The study was conducted using a lathe brand Bemato series 44376 with process parameters consisting of a spindle speed of 280 m /min, the infeed depth is 0.8 mm, and the infeed speed is 0.040 mm/rev. The research method used is an experimental method and the results of the turning process are measured the level of surface roughness using a surface roughness tester. Based on the results of the specimen measurements, it is found that there are differences in surface roughness produced by variations in the free angle (α) and exhaust angle (β). As for the lowest roughness value of the whole specimen turning process is in the turning process with variations in angle 6° and angle sudut 10° with a surface roughness value (Ra) of 2,555 m.


Sign in / Sign up

Export Citation Format

Share Document