Lipid biomarker analysis of cyanobacteria-dominated microbial mats in meltwater ponds on the McMurdo Ice Shelf, Antarctica

2009 ◽  
Vol 40 (2) ◽  
pp. 258-269 ◽  
Author(s):  
Anne D. Jungblut ◽  
Michelle A. Allen ◽  
Brendan P. Burns ◽  
Brett A. Neilan
Polar Biology ◽  
2021 ◽  
Author(s):  
Eleanor E. Jackson ◽  
Ian Hawes ◽  
Anne D. Jungblut

AbstractThe undulating ice of the McMurdo Ice Shelf, Southern Victoria Land, supports one of the largest networks of ice-based, multiyear meltwater pond habitats in Antarctica, where microbial mats are abundant and contribute most of the biomass and biodiversity. We used 16S rRNA and 18S rRNA gene high-throughput sequencing to compare variance of the community structure in microbial mats within and between ponds with different salinities and pH. Proteobacteria and Cyanobacteria were the most abundant phyla, and composition at OTU level was highly specific for the meltwater ponds with strong community sorting along the salinity gradient. Our study provides the first detailed evaluation of eukaryote communities for the McMurdo Ice Shelf using the 18S rRNA gene. They were dominated by Ochrophyta, Chlorophyta and Ciliophora, consistent with previous microscopic analyses, but many OTUs belonging to less well-described heterotrophic protists from Antarctic ice shelves were also identified including Amoebozoa, Rhizaria and Labyrinthulea. Comparison of 16S and 18S rRNA gene communities showed that the Eukaryotes had lower richness and greater similarity between ponds in comparison with Bacteria and Archaea communities on the McMurdo Ice shelf. While there was a weak correlation between community dissimilarity and geographic distance, the congruity of microbial assemblages within ponds, especially for Bacteria and Archaea, implies strong habitat filtering in ice shelf meltwater pond ecosystems, especially due to salinity. These findings help to understand processes that are important in sustaining biodiversity and the impact of climate change on ice-based aquatic habitats in Antarctica.


Author(s):  
Reilly M. Blocho ◽  
Richard W. Smith ◽  
Mark R. Noll

AbstractThe purpose of this study was to observe how the composition of organic matter (OM) and the extent of anoxia during deposition within the Marcellus Formation in New York varied by distance from the sediment source in eastern New York. Lipid biomarkers (n-alkanes and fatty acids) in the extractable organic component (bitumen) of the shale samples were analyzed, and proxies such as the average chain length (ACL), aquatic to terrestrial ratio (ATR) and carbon preference index (CPI) of n-alkanes were calculated. Fatty acids were relatively non-abundant due to the age of the shale bed, but n-alkane distributions revealed that the primary component of the OM was terrigenous plants. The presence of shorter n-alkane chain lengths in the samples indicated that there was also a minor component of phytoplankton and algal (marine) sourced OM. Whole rock analyses were also conducted, and cerium anomalies were calculated as a proxy for anoxia. All samples had a negative anomaly value, indicating anoxic conditions during deposition. Two samples, however, contained values close to zero and thus were determined to have suboxic conditions. Anoxia and total organic matter (TOM) did not show any spatial trends across the basin, which may be caused by varying depths within the basin during deposition. A correlation between nickel concentrations and TOM was observed and indicates that algae was the primary source of the marine OM, which supports the lipid biomarker analysis. It was determined that the kerogen type of the Marcellus Formation in New York State is type III, consistent with a methane-forming shale bed.


2015 ◽  
Vol 118 (6) ◽  
pp. 1251-1263 ◽  
Author(s):  
C. Willers ◽  
P.J. Jansen van Rensburg ◽  
S. Claassens

2019 ◽  
Vol 127 ◽  
pp. 81-91 ◽  
Author(s):  
Susanne Alfken ◽  
Lars Wörmer ◽  
Julius S. Lipp ◽  
Jenny Wendt ◽  
Heidi Taubner ◽  
...  

Ophelia ◽  
2004 ◽  
Vol 58 (3) ◽  
pp. 165-173 ◽  
Author(s):  
Laura Villanueva ◽  
Antoni Navarrete ◽  
Jordi Urmeneta ◽  
David C. White ◽  
Ricardo Guerrero

2010 ◽  
Vol 192 (12) ◽  
pp. 3033-3042 ◽  
Author(s):  
Marcel T. J. van der Meer ◽  
Christian G. Klatt ◽  
Jason Wood ◽  
Donald A. Bryant ◽  
Mary M. Bateson ◽  
...  

ABSTRACT Roseiflexus sp. strains were cultivated from a microbial mat of an alkaline siliceous hot spring in Yellowstone National Park. These strains are closely related to predominant filamentous anoxygenic phototrophs found in the mat, as judged by the similarity of small-subunit rRNA, lipid distributions, and genomic and metagenomic sequences. Like a Japanese isolate, R. castenholzii, the Yellowstone isolates contain bacteriochlorophyll a, but not bacteriochlorophyll c or chlorosomes, and grow photoheterotrophically or chemoheterotrophically under dark aerobic conditions. The genome of one isolate, Roseiflexus sp. strain RS1, contains genes necessary to support these metabolisms. This genome also contains genes encoding the 3-hydroxypropionate pathway for CO2 fixation and a hydrogenase, which might enable photoautotrophic metabolism, even though neither isolate could be grown photoautotrophically with H2 or H2S as a possible electron donor. The isolates exhibit temperature, pH, and sulfide preferences typical of their habitat. Lipids produced by these isolates matched much better with mat lipids than do lipids produced by R. castenholzii or Chloroflexus isolates.


Radiocarbon ◽  
2015 ◽  
Vol 57 (4) ◽  
pp. 707-719 ◽  
Author(s):  
Carl Heron ◽  
Oliver E Craig

Foodcrusts, the charred surface deposits on pottery vessel surfaces, provide a rich source of data regarding container function. This article reviews recent applications focusing on the detection of aquatic resources (marine and freshwater) in pottery vessels using a range of analytical approaches including bulk isotope measurements of carbon and nitrogen, lipid biomarker analysis, and compound-specific carbon isotope determinations. Such data can help to evaluate the presence of reservoir effects when undertaking radiocarbon dating of foodcrust samples. In particular, molecular and isotopic analysis can aid in the selection of suitable candidates for14C where it can be demonstrated that aquatic resources are unlikely to contribute to the residue. Prospects for compound-specific14C analysis of lipids in foodcrusts and ceramic-absorbed residues are also discussed.


2018 ◽  
Author(s):  
Loeka L. Jongejans ◽  
Jens Strauss ◽  
Josefine Lenz ◽  
Francien Peterse ◽  
Kai Mangelsdorf ◽  
...  

Abstract. As Arctic warming continues and permafrost thaws, more soil and sedimentary organic carbon (OC) will be decomposed in northern high latitudes. Still, uncertainties remain in the quantity and quality of OC stored in different deposit types of permafrost landscapes. This study presents OC data from deep permafrost and lake deposits on the Baldwin Peninsula which is located in the southern portion of the continuous permafrost zone in West Alaska. Sediment samples from yedoma and drained thermokarst lake basin (DTLB) deposits as well as thermokarst lake sediments were analyzed for cryostratigraphical and biogeochemical parameters and their lipid biomarker composition to identify the size and quality of belowground OC pools in ice-rich permafrost on Baldwin Peninsula. We provide the first detailed characterization of yedoma deposits on Baldwin Peninsula. We show that three quarters of soil organic carbon in the frozen deposits of the study region (total of 68 Mt) is stored in DTLB deposits (52 Mt) and one quarter in the frozen yedoma deposits (16 Mt). The lake sediments contain a relatively small OC pool (4 Mt), but have the highest volumetric OC content (93 kg/m3) compared to the DTLB (35 kg/m3) and yedoma deposits (8 kg/m3), largely due to differences in the ground ice content. The biomarker analysis indicates that the OC in both yedoma and DTLB deposits is mainly of terrestrial origin. Nevertheless, the relatively high carbon preference index of plant leaf waxes in combination with a lack of degradation trend with depth in the yedoma deposits indicates that OC stored in yedoma is less degraded than that stored in DTLB deposits. This suggests that OC in yedoma has a higher potential for decomposition upon thaw, despite the relatively small size of this pool. These findings highlight the importance of molecular OC analysis for determining the potential future greenhouse gas emissions from thawing permafrost, especially because this area close to the discontinuous permafrost boundary is projected to thaw substantially within the 21st century.


Sign in / Sign up

Export Citation Format

Share Document