The impact of pancreatic cancer cell exosomes on the phenotype of pancreatic cancer cells

Pancreatology ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. S22-S23
Author(s):  
Stuart Robinson ◽  
Derek Mann ◽  
Richard Charnley ◽  
Jelena Mann ◽  
Steve White
2018 ◽  
Author(s):  
Vincent Drubay ◽  
Nicolas Skrypek ◽  
Lucie Cordiez ◽  
Romain Vasseur ◽  
Céline Schulz ◽  
...  

AbstractPancreatic adenocarcinoma (PDAC) is one of the most deadly cancers in the western countries because of a lack of early diagnostic markers and efficient therapeutics. At the time of diagnosis, more than 80% of patients have metastasis or locally advanced cancer and are therefore not eligible for surgical resection. Pancreatic cancer cell also harbour a high resistance to chemotherapeutic drugs such as gemcitabine that is one of the main palliative treatment for PDAC.TGF-β possesses both tumor-suppressive and oncogenic activities in pancreatic cancer. TGF-β signalling pathway plays complex role during carcinogenesis by initially inhibiting epithelial growth and later promoting the progression of advanced tumors and thus emerged as tumor suppressor pathway. TGF-β binds to its receptor TGF-βRII and activates different pathways: canonical pathway involving the Smad proteins and alternative pathways such as MAPKs. Smad4 is mutated in 50-80% of PDAC. Mutations of TGF-βRII also occurs (5-10%). In order to decipher the role of TGF-β in carcinogenesis and chemoresistance, we decided to characterize the knocking down of TGF-βRII that is the first actor of TGF-β signalling. We developed pancreatic cancer cell lines stably invalidated for TGF-βRII and studied the impact on biological properties of pancreatic cancer cells both in vitro and in vivo. We show that TGF-βRII silencing alters tumor growth and migration as well as resistance to. TGF-βRII silencing also leads to S727 STAT3 and S-63 c-Jun phosphorylation, decrease of MRP3 and increase of MRP4 ABC transporter expression and induction of a partial EMT phenotype.In the future, the better understanding TGF-β signaling pathways and underlying cellular mechanisms in chemoresistance to gemcitabine may bring new therapeutic tools to clinicians.


2020 ◽  
Author(s):  
Heidi Roth ◽  
Fatema Bhinderwala ◽  
Rodrigo Franco ◽  
You Zhou ◽  
Robert Powers

Abstract BackgroundAt less than 7%, pancreatic ductal adenocarcinoma (PDAC) has one of the poorest 5-year cancer survival rates and is set to be the leading cause of cancer related deaths by 2030. The co-chaperone protein DNAJA1 (HSP40) is downregulated four-fold in pancreatic cancer cells, but its impact on pancreatic ductal adenocarcinoma (PDAC) progression remains unclear.MethodsDNAJA1 was overexpressed in pancreatic cancer cell lines, BxPC-3 and MIA PaCa-2, through retroviral transfection. The impact of overexpressing DNAJA1 was investigated using a combination of untargeted metabolomics, stable isotope resolved metabolomics (SIRM), confocal microscopy, flow-cytometry, and cell-based assays.ResultsPancreatic cancer cells overexpressing DNAJA1 exhibited a global metabolomic change. Specifically, differential output from Warburg glycolysis, an increase in redox currency, and an alteration in amino acid levels were observed in both overexpression cell lines. DNAJA1 overexpression also led to mitochondrial fusion, an increase in the expression of Bcl-2, a modest protection from redox induced cell death, a loss of structural integrity due to the loss of actin fibers, and an increase in cell invasiveness in BxPC-3. These differences were more pronounced in BxPC-3, which contains a loss-of-function mutation in the tumor suppressing gene SMAD4.ConclusionsThe overexpression of DNAJA1 promoted cellular proliferation, redox tolerance, invasiveness, and anti-apoptosis, which suggests DNAJA1 has numerous regulatory roles. Overall, our findings suggest a proto-oncogenic role of DNAJA1 in PDAC progression and suggests DNAJA1 may function synergistically with other proteins with altered activity in pancreatic cancer cell lines.


2019 ◽  
Vol 19 (5) ◽  
pp. 417-427 ◽  
Author(s):  
Xiang Chen ◽  
Jilai Tian ◽  
Gloria H. Su ◽  
Jiayuh Lin

Background:Elevated production of the pro-inflammatory cytokine interleukin-6 (IL-6) and dysfunction of IL-6 signaling promotes tumorigenesis and are associated with poor survival outcomes in multiple cancer types. Recent studies showed that the IL-6/GP130/STAT3 signaling pathway plays a pivotal role in pancreatic cancer development and maintenance.Objective:We aim to develop effective treatments through inhibition of IL-6/GP130 signaling in pancreatic cancer.Methods:The effects on cell viability and cell proliferation were measured by MTT and BrdU assays, respectively. The effects on glycolysis was determined by cell-based assays to measure lactate levels. Protein expression changes were evaluated by western blotting and immunoprecipitation. siRNA transfection was used to knock down estrogen receptor α gene expression. Colony forming ability was determined by colony forming cell assay.Results:We demonstrated that IL-6 can induce pancreatic cancer cell viability/proliferation and glycolysis. We also showed that a repurposing FDA-approved drug bazedoxifene could inhibit the IL-6/IL-6R/GP130 complexes. Bazedoxifene also inhibited JAK1 binding to IL-6/IL-6R/GP130 complexes and STAT3 phosphorylation. In addition, bazedoxifene impeded IL-6 mediated cell viability/ proliferation and glycolysis in pancreatic cancer cells. Consistently, other IL-6/GP130 inhibitors SC144 and evista showed similar inhibition of IL-6 stimulated cell viability, cell proliferation and glycolysis. Furthermore, all three IL-6/GP130 inhibitors reduced the colony forming ability in pancreatic cancer cells.Conclusion:Our findings demonstrated that IL-6 stimulates pancreatic cancer cell proliferation, survival and glycolysis, and supported persistent IL-6 signaling is a viable therapeutic target for pancreatic cancer using IL-6/GP130 inhibitors.


1994 ◽  
Vol 266 (1) ◽  
pp. R277-R283 ◽  
Author(s):  
J. P. Smith ◽  
G. Liu ◽  
V. Soundararajan ◽  
P. J. McLaughlin ◽  
I. S. Zagon

The gastrointestinal peptide cholecystokinin (CCK) is known to stimulate growth of human pancreatic cancer in a receptor-mediated fashion. The purpose of this study was to characterize the receptor responsible for the trophic effects of CCK in cancer cells. With the use of homogenates of PANC-1 human pancreatic cancer cells grown in vitro, the binding characteristics and optimal conditions of radiolabeled selective CCK-receptor antagonists ([3H]L-365,260 and [3H]L-364,718) were examined. Specific and saturable binding was detected with [3H]L-365,260, and Scatchard analysis revealed that the data were consistent for a single site of binding with a binding affinity of 4.3 +/- 0.6 nM and a binding capacity (Bmax) of 283 +/- 68 fmol/mg protein in log phase cells. Binding was dependent on protein concentration, time, temperature, and pH and was sensitive to Na+, K+, Mg2+, and ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. In contrast to log phase cells, Bmax decreased by 80 and 92% in confluent and postconfluent cultures, respectively. Subcellular fractionation studies revealed that binding was in the membrane fraction. Competition experiments indicated that L-365,260 and gastrin were more effective at displacing the radiolabeled L-365,260 than CCK. No binding was detected with the CCK-A antagonist [3H]L-364,718. Assays performed with [3H]L-365,260 on five additional human pancreatic cancer cell lines in vitro and tumor tissue from xenografts in nude mice also revealed specific and saturable binding. These results provide the first identification of a CCK-B/gastrin receptor in human pancreatic cancer cells and tumors and explain the effects of CCK on the growth of this malignancy.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3628
Author(s):  
Manoj Amrutkar ◽  
Nils Tore Vethe ◽  
Caroline S. Verbeke ◽  
Monica Aasrum ◽  
Anette Vefferstad Finstadsveen ◽  
...  

Gemcitabine resistance in pancreatic ductal adenocarcinoma (PDAC) is attributed to cancer cell-intrinsic drug processing and the impact of the tumor microenvironment, especially pancreatic stellate cells (PSCs). This study uses human PDAC-derived paired primary cancer cells (PCCs) and PSCs from four different tumors, and the PDAC cell lines BxPC-3, Mia PaCa-2, and Panc-1, to assess the fate of gemcitabine by measuring its cellular uptake, cytotoxicity, and LC-MS/MS-based metabolite analysis. Expression analysis and siRNA-mediated knockdown of key regulators of gemcitabine (hENT1, CDA, DCK, NT5C1A) was performed. Compared to PSCs, both the paired primary PCCs and cancer cell lines showed gemcitabine-induced dose-dependent cytotoxicity, high uptake, as well as high and variable intracellular levels of gemcitabine metabolites. PSCs were gemcitabine-resistant and demonstrated significantly lower drug uptake, which was not influenced by co-culturing with their paired PCCs. Expression of key gemcitabine regulators was variable, but overall strong in the cancer cells and significantly lower or undetectable in PSCs. In cancer cells, hENT1 inhibition significantly downregulated gemcitabine uptake and cytotoxicity, whereas DCK knockdown reduced cytotoxicity. In conclusion, heterogeneity in gemcitabine processing among different pancreatic cancer cells and stellate cells results from the differential expression of molecular regulators which determines the effect of gemcitabine.


2005 ◽  
Vol 20 (4) ◽  
pp. 235-241 ◽  
Author(s):  
E. Greco ◽  
D. Basso ◽  
P. Fogar ◽  
S. Mazza ◽  
F. Navaglia ◽  
...  

Background We investigated in vitro whether IL-1β and TGF-β1 affect pancreatic cancer cell growth, adhesion to the extracellular matrix and Matrigel invasion. Materials and methods Adhesion to fibronectin, laminin and type I collagen, and Matrigel invasion after stimulation with saline, IL-1β and TGF-β1 were evaluated using three primary and three metastatic pancreatic cancer cell lines. Results Extracellular matrix adhesion of control cells varied independently of the metastatic characteristics of the studied cell lines, whereas Matrigel invasion of control cells was partly correlated with the in vivo metastatic potential. IL-1β did not influence extracellular matrix adhesion, whereas it significantly enhanced the invasiveness of three of the six cell lines. TGF-β1 affected the adhesion of one cell line, and exerted contrasting effects on Matrigel invasion of different cell lines. Conclusions IL-1β enhances the invasive capacity of pancreatic cancer cells, whereas TGF-β1 has paradoxical effects on pancreatic cancer cells; this makes it difficult to interfere with TGF-β1 signaling in pancreatic cancer treatment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2136-2136
Author(s):  
Huong Chi Mai Tran ◽  
Rania Amrane ◽  
Elisabeth Mbemba ◽  
Michele Sabbah ◽  
Ismail Elalamy ◽  
...  

Abstract Background Cancer patients with venous thromboembolism (VTE) or at risk of VTE are treated with antithrombotic agents. Cancer cells express procoagulant properties and induce hypercoagulability in the microenvironment, that could impact the efficiency of the antithrombotic agents. Aims In the present study, we investigated the interaction between antithrombotic agents with pancreatic cancer cells, as well as with their microenvironment. The impact of apixaban, fondaparinux, enoxaparin and tinzaparin on the procoagulant properties of pancreatic cancer cells BXPC3 was examinated. Reciprocally, we also investigated the impact of BXPC3 on the potency of these antithrombotic agents. Methods BXPC3 cells (400 cells/μl) were exposed for 48 hours to apixaban (2 µg/ml), fondaparinux (2 µg/ml), enoxaparin, tinzaparin (2 anti-Xa IU/ml) or NaCL (control). Then, conditioned media (CM) and BXPC3 cells were harvested, separated and put in contact with normal platelet-poor plasma (PPP). Subsequently, thrombin generation (TG) was assessed using Thrombogram-Thrombinoscope® assay (Diagnostica Stago). Cells' viability was also assessed with the MTT assay. Gene expression for Tissue Factor (TF), Vascular Endothelial Growth Factor (VEGF), Thrombospondin 1 (THSB1) was assessed with RT-qPCR at the cells exposed or not to the antithrombotic agents. Expression of TF protein and activity of cancer cells was assessed using ELISA method. Residual anti-Xa activity in CM was measured using specific amidolytic assays for each antithrombotic agent. Results Apixaban, fondaparinux, enoxaparin, and tinzaparin significantly reduced cell viability by 25%, 12%, 14%, and 11% respectively. In the control experiment non treated BXPC3 cells enhanced TG. Pre-treatment of BXPC3 with the antithrombotic agents did not significantly modify their capacity to trigger and enhance TG. Among the studied agents only apixaban resulted in significant decrease of TF mRNA expression. However, protein expression of TF was not significantly modified by any of the antithrombotic agents. VEGF's mRNA expression was significantly decreased by fondaparinux and enoxaparin. THBS1's mRNA expression was significantly increased by apixaban. The concentrations of the anti-Xa activity of fondaparinux, enoxaparin and tinzaparin in the CM obtained at 48h after exposure of cells were reduced by 27%, 48% and 26% respectively as compared to those initially added in the culture medium. In contrast, the concentration of apixaban in the CM did not significantly change. The CM obtained by cells exposed to apixaban, fondaparinux, enoxaparin and tinzaparin inhibited TG by 70%, 30%, 40% and 90% respectively. Conclusion. Antithrombotic agents reduced the viability of BXPC3 cells. Among the studied agents, apixaban had the most pronounced effect on cells' viability. The antithrombotic agents had a potential downregulating effect on the proangiogenetic properties of BXPC3 via the decrease of VEGF gene expression (fondaparinux and enoxaparin) and enhancement of THBS1 gene expression (apixaban). Nevertheless, preincubation of BXPC3 with the antithrombotic agents did not alter the expression of TF protein and their effect on thrombin generation. Moreover, BXPCE exerted a "degradation" effect on LMWH and fondaparinux. Apixaban appeared to escape from this effect of the cancer cells. A significant inhibitory effect on thrombin generation was exerted by the residual concentrations of the antithrombotic agents in the microenvironment of cancer cells. The ensemble of these data highlight for the first time that the presence of antithrombotic agents in cancer cell microenvironment alters the biology of cancer cells and offer a constant antithrombotic effect in the microenvironment. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Yutong Gao ◽  
Yu Zhou ◽  
Chunlin Wang ◽  
Klarke Sample ◽  
Xiangdi Yu ◽  
...  

Abstract Background Propofol is a commonly used anesthetic with controversial effects on cancer cells. A growing number of studies have demonstrated that low concentrations of propofol are associated with tumor suppression and when used as an intravenous anesthesia improved recurrence-free survival rates for many cancers, but deeper insights into its underlying mechanism are needed. Methods The study detailed herein focuses upon the effect of propofol on pancreatic cancer cells and the mechanism by which propofol reduces ADAM8 expression. The ability of propofol to impact the proliferation, migration and cell cycle of a pancreatic cancer cell line was assessed in vitro. This was mechanistically explored following the identification of SP1 binding sites within ADAM8, which enabled the regulatory effects of SP1 on ADAM8 following propofol treatment to be further explored. Results This study was able to show that propofol significantly inhibited the proliferation, migration and invasion of pancreatic cancer cells and decreased the percentage of cells in S-phase. Propofol treatment was also shown to repress ADAM8 and SP1 expression, but was unable to affect ADAM8 expression following knockdown of SP1. Moreover, a direct physical interaction between SP1 and ADAM8 was verified using Co-immunoprecipitation and dual-luciferase reporter assays. Conclusion These results suggest that propofol represses pathological biological behaviors associated with pancreatic cancer cells through the suppression of SP1, which in turn results in lower ADAM8 mRNA expression and protein levels.


2021 ◽  
Author(s):  
Barath Udayasuryan ◽  
Tam T.D. Nguyen ◽  
Ariana Umana ◽  
LaDeidra Monet Roberts ◽  
Raffae A Ahmad ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) harbors a complex tumor microbiome that has been implicated in cancer progression and resistance to chemotherapy. Recent clinical investigations uncovered a correlation between high loads of intratumor Fusobacterium nucleatum and decreased patient survival. Here we show that pancreatic cancer cell lines harboring intracellular F. nucleatum secrete elevated levels of cancer-associated cytokines including IL-8, CXCL1, GM-CSF, and MIP-3α. We report that GM-CSF directly increases the proliferation of pancreatic cancer cells, and contributes to increased cellular migration, notably in the absence of immune cell participation. This study is the first to investigate the direct impact of F. nucleatum infection on pancreatic cancer cells. Our results suggest that F. nucleatum within the pancreatic tumor microenvironment elicits infection-specific cytokine secretion that directly contributes adversely to cancer progression and warrants further research into therapeutic manipulation of the pancreatic tumor microbiome.


2009 ◽  
Vol 101 (7) ◽  
pp. 1145-1154 ◽  
Author(s):  
T Nedjadi ◽  
N Kitteringham ◽  
F Campbell ◽  
R E Jenkins ◽  
B K Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document