Data-driven inverse modeling with a pre-trained neural network at heterogeneous channel reservoirs

2018 ◽  
Vol 170 ◽  
pp. 785-796 ◽  
Author(s):  
Seongin Ahn ◽  
Changhyup Park ◽  
Jaejun Kim ◽  
Joe M. Kang
2021 ◽  
Author(s):  
Andre C. Bertolini ◽  
◽  
Vanessa Simoes ◽  
Marianna Dantas ◽  
Patrick Pereira Machado ◽  
...  

The filtrate contamination cleanup time on a complex carbonate well using a traditional wireline formation tester (WFT) tool can vary from a couple of hours to over half a day. The method proposed aims at reducing operational time to collect a low-contamination formation fluid sample by determining regions with a smaller depth of invasion using a forward model simulation that considers static and dynamic formation properties to predict the radial profile of invasion. The mud filtrate invasion process was modeled considering the static and dynamic properties of the near-wellbore region in an industry reference reservoir simulator, and it integrates three mechanisms for fluid flow: Darcy’s law, material balance, and capillary pressure. The physical robustness of the reservoir simulator was united to a data-driven model to reduce the computational cost. This proxy model is based on a trained neural network with a broad range of scenarios to predict the numerical simulation results with high accuracy. The invasion estimation from the model is then used to predict the filtrate cleanup time using an industry consolidated numerical modeling. One of the variables influencing most of the cleanup time is the depth of mud filtrate invasion. Thus, reducing this time is a determinant for the WFT operational efficiency. The model for mud invasion has been successfully tested on a complex carbonate well, and the results for the depth of mud invasion were comparable to the results obtained with a commercial data-driven inversion using multiple resistivity channels. The estimated cleanup time using the results of depth of invasion predicted by the forward model has been compared and matched with real carbonate sampling stations, and there was a high correlation indicating that zones with lower depth of invasion required less cleanup time. Besides, using the history-matched cases, different WFT technologies such as single and radial probes, focused, unfocused, and dual-packer WFT inlets were evaluated, showing a high potential for reduction of operational time when properly planned and selected for the specific type of reservoir. The proposed methodology is a viable method for understanding the clean-up behavior in different reservoir scenarios using different WFT technologies. The innovation of this method relies on the data calibration using basic and advanced petrophysical properties through a data-driven model based on a trained neural network to reduce the uncertainty in the predicted invasion radial profile and the WFT cleanup time. The reliability on the theoretical results was increased using real data calibration, and this calibrated theoretical model has been used to guide the sampling depth selection, saving operational time.


2021 ◽  
Vol 11 (4) ◽  
pp. 1829
Author(s):  
Davide Grande ◽  
Catherine A. Harris ◽  
Giles Thomas ◽  
Enrico Anderlini

Recurrent Neural Networks (RNNs) are increasingly being used for model identification, forecasting and control. When identifying physical models with unknown mathematical knowledge of the system, Nonlinear AutoRegressive models with eXogenous inputs (NARX) or Nonlinear AutoRegressive Moving-Average models with eXogenous inputs (NARMAX) methods are typically used. In the context of data-driven control, machine learning algorithms are proven to have comparable performances to advanced control techniques, but lack the properties of the traditional stability theory. This paper illustrates a method to prove a posteriori the stability of a generic neural network, showing its application to the state-of-the-art RNN architecture. The presented method relies on identifying the poles associated with the network designed starting from the input/output data. Providing a framework to guarantee the stability of any neural network architecture combined with the generalisability properties and applicability to different fields can significantly broaden their use in dynamic systems modelling and control.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3068
Author(s):  
Soumaya Dghim ◽  
Carlos M. Travieso-González ◽  
Radim Burget

The use of image processing tools, machine learning, and deep learning approaches has become very useful and robust in recent years. This paper introduces the detection of the Nosema disease, which is considered to be one of the most economically significant diseases today. This work shows a solution for recognizing and identifying Nosema cells between the other existing objects in the microscopic image. Two main strategies are examined. The first strategy uses image processing tools to extract the most valuable information and features from the dataset of microscopic images. Then, machine learning methods are applied, such as a neural network (ANN) and support vector machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores deep learning and transfers learning. Several approaches were examined, including a convolutional neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema images from the other object images. The best accuracy was reached by the VGG-16 pre-trained neural network with 96.25%.


2021 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Omar Nassef ◽  
Toktam Mahmoodi ◽  
Foivos Michelinakis ◽  
Kashif Mahmood ◽  
Ahmed Elmokashfi

This paper presents a data driven framework for performance optimisation of Narrow-Band IoT user equipment. The proposed framework is an edge micro-service that suggests one-time configurations to user equipment communicating with a base station. Suggested configurations are delivered from a Configuration Advocate, to improve energy consumption, delay, throughput or a combination of those metrics, depending on the user-end device and the application. Reinforcement learning utilising gradient descent and genetic algorithm is adopted synchronously with machine and deep learning algorithms to predict the environmental states and suggest an optimal configuration. The results highlight the adaptability of the Deep Neural Network in the prediction of intermediary environmental states, additionally the results present superior performance of the genetic reinforcement learning algorithm regarding its performance optimisation.


2019 ◽  
Vol 29 (9) ◽  
pp. 091101 ◽  
Author(s):  
Nikita Frolov ◽  
Vladimir Maksimenko ◽  
Annika Lüttjohann ◽  
Alexey Koronovskii ◽  
Alexander Hramov

Sign in / Sign up

Export Citation Format

Share Document