Distribution and source significance of 2-methylalkanes in coal-measure source rocks, northwest China

2019 ◽  
Vol 174 ◽  
pp. 257-267 ◽  
Author(s):  
Qingsong Cheng ◽  
Huang Guanghui ◽  
Min Zhang ◽  
Zhang Wenjun ◽  
Liu Xi
2018 ◽  
Vol 36 (4) ◽  
pp. 801-819 ◽  
Author(s):  
Shuangfeng Zhao ◽  
Wen Chen ◽  
Zhenhong Wang ◽  
Ting Li ◽  
Hongxing Wei ◽  
...  

The condensate gas reservoirs of the Jurassic Ahe Formation in the Dibei area of the Tarim Basin, northwest China are typical tight sandstone gas reservoirs and contain abundant resources. However, the hydrocarbon sources and reservoir accumulation mechanism remain debated. Here the distribution and geochemistry of fluids in the Ahe gas reservoirs are used to investigate the formation of the hydrocarbon reservoirs, including the history of hydrocarbon generation, trap development, and reservoir evolution. Carbon isotopic analyses show that the oil and natural gas of the Ahe Formation originated from different sources. The natural gas was derived from Jurassic coal measure source rocks, whereas the oil has mixed sources of Lower Triassic lacustrine source rocks and minor amounts of coal-derived oil from Jurassic coal measure source rocks. The geochemistry of light hydrocarbon components and n-alkanes shows that the early accumulated oil was later altered by infilling gas due to gas washing. Consequently, n-alkanes in the oil are scarce, whereas naphthenic and aromatic hydrocarbons with the same carbon numbers are relatively abundant. The fluids in the Ahe Formation gas reservoirs have an unusual distribution, where oil is distributed above gas and water is locally produced from the middle of some gas reservoirs. The geochemical characteristics of the fluids show that this anomalous distribution was closely related to the dynamic accumulation of oil and gas. The period of reservoir densification occurred between the two stages of oil and gas accumulation, which led to the early accumulated oil and part of the residual formation water being trapped in the tight reservoir. After later gas filling into the reservoir, the fluids could not undergo gravity differentiation, which accounts for the anomalous distribution of fluids in the Ahe Formation.


2013 ◽  
Vol 295-298 ◽  
pp. 2770-2773 ◽  
Author(s):  
Dai Yong Cao ◽  
Jing Li ◽  
Ying Chun Wei ◽  
Xiao Yu Zhang ◽  
Chong Jing Wang

Besides coal seam, the source rocks including dark mudstone, carbon mudstone and so on account for a large proportion in the coal measures. Based on the complex geothermal evolution history, the majority of coal measure organic matters with the peak of gas generation have a good potential of gas. Therefore, shale gas in coal measure is an important part of the shale gas resources. There are good conditions including the thickness of coal measures, high proportion of shale rocks, rich in organic matter content, high degree of thermal evolution, high content of brittle mineral and good conditions of the porosity and permeability for the generation of shale gas in Wuli area, the south of Qinghai province. Also the direct evidence of the gas production has been obtained from the borehole. The evaluation of shale gas in coal measure resources could broaden the understanding of the shale gas resources and promote the comprehensive development of the coal resources.


1982 ◽  
Vol 22 (1) ◽  
pp. 164 ◽  
Author(s):  
B. M. Thomas

Many Australian oils are rich in paraffin waxes which are derived from the remains of terrestrial plants. Although the land-plant contribution to oils, particularly those found in a paralic or deltaic environment, is well established, opinion is divided on the ability of non-marine coaly sediments to generate and expel commercial quantities of oil. It appears that some coal measure sequences have generated mainly gas whilst others are the source of large oil accumulations. The composition of coals deposited in Australia has varied through geological time as a result of differences in climate, geological setting, depositional environment and stage of floral evolution. Consequently, most Australian pre-Jurassic coal measure sequences are deficient in exinite macerals and are therefore mainly gas-prone. In contrast, Jurassic to Tertiary coal-rich sequences often contain abundant exinite and may have substantial potential to generate oil in commercial quantities, as demonstrated by the well-known Gippsland Basin (Bass Strait) oilfields.A similar trend is observed worldwide, where, despite the extraordinary global abundance of Late Palaeozoic coals, only minor amounts of crude oil of land-plant origin are known to be associated with them. However, there appears to be a close relationship between the occurrence of waxy, land-plant-derived crudes and coaly sediments of Cretaceous and Tertiary age. This is thought to be a result of the dominance of conifers in swamp floras of these periods, together with the evolution of the angiosperms (flowering plants) in the Late Cretaceous.


2020 ◽  
Vol 105 (10) ◽  
pp. 1556-1571
Author(s):  
Long Zhang ◽  
Xiaofeng Li ◽  
Guo Wang ◽  
Mou Wang

Abstract Circumstantial evidence for the sources of uranium in ore deposits may be drawn from the study of deposit geochemistry and mineralogy. However, direct evidence supporting uranium leaching from source rocks has rarely been found. This study investigates the source of uranium in the Baiyanghe deposit in the Xiemisitai Mountains, northwest China. The main uranium ore bodies occur as fracture-fillings along contact zones between the Yangzhuang granite porphyry and the Devonian volcanic rocks. Zircon, thorite, columbite-(Mn), and bastnäsite are the dominant accessory minerals that host uranium in the granite porphyry. In situ columbite-(Mn) LA-ICP-MS U-Pb dating yields a weighted mean 206Pb/238U age of 310 ± 4 Ma, suggesting that the Yangzhuang granite porphyry was emplaced during the Late Carboniferous. Backscattered electron (BSE) images reveal that various degrees of alteration of these same accessory minerals may be observed in the granite porphyry, and the altered domains of these minerals have lower BSE intensities compared to the unaltered domains. Results indicate that the altered domains of zircon grains have lower concentrations of Zr, Si, and U, and higher concentrations of Y, Fe, Ca, and P relative to the unaltered domains, and the altered domains of columbite-(Mn) grains are enriched in Ti and Fe and are depleted in Nb, Ta, Mn, U, and Zr. The altered domains of thorite grains have higher concentrations of Zr, Fe, Ca, Nb, and P, and lower Th and U compared to those of the relict domains. The petrochemical data indicate that the granite porphyry experienced losses in U, Be, F, Ba, Sr, Pb, Zr, Mo, Nb, Ta, and Hf during alteration. These results suggest that the past-magmatic hydrothermal fluids might be responsible for the mobilization of uranium form minerals in the granite porphyry. It is concluded that U-bearing accessory minerals in the granite porphyry were the primary source of uranium, and that post-magmatic hydrothermal processes caused remobilization and significant localized enrichment of the uranium to form high-grade ores as fracture-fillings along its contacts.


Sign in / Sign up

Export Citation Format

Share Document