scholarly journals Numerical Simulation of SQUID Magnetometer Considering Equivalent Electrical Circuit of Josephson Junction

2014 ◽  
Vol 58 ◽  
pp. 200-203 ◽  
Author(s):  
Naoya Terauchi ◽  
So Noguchi ◽  
Hajime Igarashi
2008 ◽  
Vol 461 (1-3) ◽  
pp. 164-169 ◽  
Author(s):  
R. Atasiei ◽  
A.L. Alexe-Ionescu ◽  
J.C. Dias ◽  
L.R. Evangelista ◽  
G. Barbero

2011 ◽  
Vol 158 (3) ◽  
pp. A326 ◽  
Author(s):  
T. K. Dong ◽  
A. Kirchev ◽  
F. Mattera ◽  
J. Kowal ◽  
Y. Bultel

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2305 ◽  
Author(s):  
Yunhe Yu ◽  
Nishant Narayan ◽  
Victor Vega-Garita ◽  
Jelena Popovic-Gerber ◽  
Zian Qin ◽  
...  

The past few years have seen strong growth of solar-based off-grid energy solutions such as Solar Home Systems (SHS) as a means to ameliorate the grave problem of energy poverty. Battery storage is an essential component of SHS. An accurate battery model can play a vital role in SHS design. Knowing the dynamic behaviour of the battery is important for the battery sizing and estimating the battery behaviour for the chosen application at the system design stage. In this paper, an accurate cell level dynamic battery model based on the electrical equivalent circuit is constructed for two battery technologies: the valve regulated lead–acid (VRLA) battery and the LiFePO 4 (LFP) battery. Series of experiments were performed to obtain the relevant model parameters. This model is built for low C-rate applications (lower than 0.5 C-rate) as expected in SHS. The model considers the non-linear relation between the state of charge ( S O C ) and open circuit voltage ( V OC ) for both technologies. Additionally, the equivalent electrical circuit model for the VRLA battery was improved by including a 2nd order RC pair. The simulated model differs from the experimentally obtained result by less than 2%. This cell level battery model can be potentially scaled to battery pack level with flexible capacity, making the dynamic battery model a useful tool in SHS design.


Author(s):  
Alexander N. BUSYGIN ◽  
Andrey N. BOBYLEV ◽  
Alexey A. GUBIN ◽  
Alexander D. PISAREV ◽  
Sergey Yu. UDOVICHENKO

This article presents the results of a numerical simulation and an experimental study of the electrical circuit of a hardware spiking perceptron based on a memristor-diode crossbar. That has required developing and manufacturing a measuring bench, the electrical circuit of which consists of a hardware perceptron circuit and an input peripheral electrical circuit to implement the activation functions of the neurons and ensure the operation of the memory matrix in a spiking mode. The authors have performed a study of the operation of the hardware spiking neural network with memristor synapses in the form of a memory matrix in the mode of a single-layer perceptron synapses. The perceptron can be considered as the first layer of a biomorphic neural network that performs primary processing of incoming information in a biomorphic neuroprocessor. The obtained experimental and simulation learning curves show the expected increase in the proportion of correct classifications with an increase in the number of training epochs. The authors demonstrate generating a new association during retraining caused by the presence of new input information. Comparison of the results of modeling and an experiment on training a small neural network with a small crossbar will allow creating adequate models of hardware neural networks with a large memristor-diode crossbar. The arrival of new unknown information at the input of the hardware spiking neural network can be related with the generation of new associations in the biomorphic neuroprocessor. With further improvement of the neural network, this information will be comprehended and, therefore, will allow the transition from weak to strong artificial intelligence.


2020 ◽  
Vol 20 (8) ◽  
pp. 4884-4891
Author(s):  
Rawiwan Chaleawpong ◽  
Nathaporn Promros ◽  
Peerasil Charoenyuenyao ◽  
Phongsaphak Sittimart ◽  
Satoshi Takeichi ◽  
...  

Coaxial arc plasma deposition (CAPD) was employed to manufacture n-type silicon/boron-doped p-type ultrananocrystalline diamond heterojunctions. Measurement and analysis of their dark current density-voltage curve were carried out at room temperature in order to calculate the requisite junction parameters using the Cheung and Norde approaches. For the calculation based on the Cheung approach, the series resistance (Rs), ideality factor (n) and barrier height (Φb) were 4.58 kΩ, 2.82 and 0.75 eV, respectively. The values of Rs and Φb were in agreement with those calculated using the Norde approach. Their characteristics for alternative current impedance at different frequency values were measured and analyzed as a function of the voltage (V) values ranging from 0 V to 0.5 V. Appearance of the real (Z′) and imaginary (Z″) characteristics for all V values presented single semicircles. The centers of the semicircular curves were below the Z′ axis and the diameter of the semicircles decreased with increments of the V value. The proper equivalent electrical circuit model for the manufactured heterojunction behavior was comprised of Rs combined with the parallel circuit of resistance and constant phase element.


Sign in / Sign up

Export Citation Format

Share Document