scholarly journals Feasibility of Passive Tomography of Extended Defects Using Ambient Elastic Noise Correlation

2015 ◽  
Vol 70 ◽  
pp. 640-643
Author(s):  
Tom Druet ◽  
Bastien Chapuis ◽  
Emmanuel Moulin
Author(s):  
W. T. Donlon ◽  
S. Shinozaki ◽  
E. M. Logothetis ◽  
W. Kaizer

Since point defects have a limited solubility in the rutile (TiO2) lattice, small deviations from stoichiometry are known to produce crystallographic shear (CS) planes which accomodate local variations in composition. The material used in this study was porous polycrystalline TiO2 (60% dense), in the form of 3mm. diameter disks, 1mm thick. Samples were mechanically polished, ion-milled by conventional techniques, and initially examined with the use of a Siemens EM102. The electron transparent thin foils were then heat-treated under controlled atmospheres of CO/CO2 and H2 and reexamined in the same manner.The “as-received” material contained mostly TiO2 grains (∼5μm diameter) which had no extended defects. Several grains however, aid exhibit a structure similar to micro-twinned grains observed in reduced rutile. Lattice fringe images (Fig. 1) of these grains reveal that the adjoining layers are not simply twin related variants of a single TinO2n-1 compound. Rather these layers (100 - 250 Å wide) are alternately comprised of stoichiometric TiO2 (rutile) and reduced TiO2 in the form of Ti8O15, with the Ti8O15 layers on either side of the TiO2 being twin related.


Author(s):  
Edward A Kenik

Segregation of solute atoms to grain boundaries, dislocations, and other extended defects can occur under thermal equilibrium or non-equilibrium conditions, such as quenching, irradiation, or precipitation. Generally, equilibrium segregation is narrow (near monolayer coverage at planar defects), whereas non-equilibrium segregation exhibits profiles of larger spatial extent, associated with diffusion of point defects or solute atoms. Analytical electron microscopy provides tools both to measure the segregation and to characterize the defect at which the segregation occurs. This is especially true of instruments that can achieve fine (<2 nm width), high current probes and as such, provide high spatial resolution analysis and characterization capability. Analysis was performed in a Philips EM400T/FEG operated in the scanning transmission mode with a probe diameter of <2 nm (FWTM). The instrument is equipped with EDAX 9100/70 energy dispersive X-ray spectrometry (EDXS) and Gatan 666 parallel detection electron energy loss spectrometry (PEELS) systems. A double-tilt, liquid-nitrogen-cooled specimen holder was employed for microanalysis in order to minimize contamination under the focussed spot.


Author(s):  
J.L. Batstone

The development of growth techniques such as metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy during the last fifteen years has resulted in the growth of high quality epitaxial semiconductor thin films for the semiconductor device industry. The III-V and II-VI semiconductors exhibit a wide range of fundamental band gap energies, enabling the fabrication of sophisticated optoelectronic devices such as lasers and electroluminescent displays. However, the radiative efficiency of such devices is strongly affected by the presence of optically and electrically active defects within the epitaxial layer; thus an understanding of factors influencing the defect densities is required.Extended defects such as dislocations, twins, stacking faults and grain boundaries can occur during epitaxial growth to relieve the misfit strain that builds up. Such defects can nucleate either at surfaces or thin film/substrate interfaces and the growth and nucleation events can be determined by in situ transmission electron microscopy (TEM).


Author(s):  
David R. Veblen

Extended defects and interfaces control many processes in rock-forming minerals, from chemical reactions to rock deformation. In many cases, it is not the average structure of a defect or interface that is most important, but rather the structure of defect terminations or offsets in an interface. One of the major thrusts of high-resolution electron microscopy in the earth sciences has been to identify the role of defect fine structures in reactions and to determine the structures of such features. This paper will review studies using HREM and image simulations to determine the structures of defects in silicate and oxide minerals and present several examples of the role of defects in mineral chemical reactions. In some cases, the geological occurrence can be used to constrain the diffusional properties of defects.The simplest reactions in minerals involve exsolution (precipitation) of one mineral from another with a similar crystal structure, and pyroxenes (single-chain silicates) provide a good example. Although conventional TEM studies have led to a basic understanding of this sort of phase separation in pyroxenes via spinodal decomposition or nucleation and growth, HREM has provided a much more detailed appreciation of the processes involved.


1998 ◽  
Vol 536 ◽  
Author(s):  
N. Ozaki ◽  
Y. Ohno ◽  
S. Takeda ◽  
M. Hirata

AbstractWe have grown Si nanowhiskers on a Si{1111} surface via the vapor-liquid-solid (VLS) mechanism. The minimum diameter of the crystalline is 3nm and is close to the critical value for the effect of quantum confinement. We have found that many whiskers grow epitaxially or non-epitaxially on the substrate along the 〈112〉 direction as well as the 〈111〉 direction.In our growth procedure, we first deposited gold on a H-terminated Si{111} surface and prepared the molten catalysts of Au and Si at 500°C. Under the flow of high pressure silane gas, we have succeeded in producing the nanowhiskers without any extended defects. We present the details of the growth condition and discuss the growth mechanism of the nanowhiskers extending along the 〈112〉 direction.


2021 ◽  
Vol 7 (8) ◽  
pp. 108
Author(s):  
Martin Friák ◽  
Miroslav Černý ◽  
Mojmír Šob

We performed a quantum mechanical study of segregation of Cu atoms toward antiphase boundaries (APBs) in Fe3Al. The computed concentration of Cu atoms was 3.125 at %. The APBs have been characterized by a shift of the lattice along the ⟨001⟩ crystallographic direction. The APB energy turns out to be lower for Cu atoms located directly at the APB interfaces and we found that it is equal to 84 mJ/m2. Both Cu atoms (as point defects) and APBs (as extended defects) have their specific impact on local magnetic moments of Fe atoms (mostly reduction of the magnitude). Their combined impact was found to be not just a simple sum of the effects of each of the defect types. The Cu atoms are predicted to segregate toward the studied APBs, but the related energy gain is very small and amounts to only 4 meV per Cu atom. We have also performed phonon calculations and found all studied states with different atomic configurations mechanically stable without any soft phonon modes. The band gap in phonon frequencies of Fe3Al is barely affected by Cu substituents but reduced by APBs. The phonon contributions to segregation-related energy changes are significant, ranging from a decrease by 16% at T = 0 K to an increase by 17% at T = 400 K (changes with respect to the segregation-related energy difference between static lattices). Importantly, we have also examined the differences in the phonon entropy and phonon energy induced by the Cu segregation and showed their strongly nonlinear trends.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Miguel C. Sequeira ◽  
Jean-Gabriel Mattei ◽  
Henrique Vazquez ◽  
Flyura Djurabekova ◽  
Kai Nordlund ◽  
...  

AbstractGaN is the most promising upgrade to the traditional Si-based radiation-hard technologies. However, the underlying mechanisms driving its resistance are unclear, especially for strongly ionising radiation. Here, we use swift heavy ions to show that a strong recrystallisation effect induced by the ions is the key mechanism behind the observed resistance. We use atomistic simulations to examine and predict the damage evolution. These show that the recrystallisation lowers the expected damage levels significantly and has strong implications when studying high fluences for which numerous overlaps occur. Moreover, the simulations reveal structures such as point and extended defects, density gradients and voids with excellent agreement between simulation and experiment. We expect that the developed modelling scheme will contribute to improving the design and test of future radiation-resistant GaN-based devices.


Sign in / Sign up

Export Citation Format

Share Document