Adrenoceptors promote glucose uptake into adipocytes and muscle by an insulin-independent signaling pathway involving mechanistic target of rapamycin complex 2

2017 ◽  
Vol 116 ◽  
pp. 87-92 ◽  
Author(s):  
Saori Mukaida ◽  
Bronwyn A. Evans ◽  
Tore Bengtsson ◽  
Dana S. Hutchinson ◽  
Masaaki Sato
2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Giovanni Davogustto ◽  
Rebecca Salazar ◽  
Hernan Vasquez ◽  
Heinrich Taegtmeyer

The heart remodels metabolically and structurally before it fails. Metabolically, the heart increases its reliance on carbohydrates for energy provision. Structurally, the heart hypertrophies to sustain increased hemodynamic stress. There is evidence suggesting that the activation of the mechanistic Target Of Rapamycin Complex 1 (mTORC1) pathway is closely tied to glucose uptake by the heart to drive the metabolic and structural remodeling. We have previously shown that with insulin stimulation or increases in workload, the glycolytic intermediate glucose 6-phosphate (G6P) is required to activate mTORC1. Sustained mTORC1 activation leads, in turn, to ER stress and contractile dysfunction. Studies by others in the kidney have shown that mTORC1 activation upregulates glucose transporter 1 (Glut1) expression and glucose uptake. We therefore test the hypothesis that chronic mTORC1 overactivation results in G6P accumulation, and precedes structural and functional remodeling in the heart. We developed mice with inducible, cardiac-specific deficiency of the protein tuberin (TSC2), a member of the tuberous sclerosis complex, the principal inhibitor of mTORC1. Intracellular G6P concentrations were measured enzymatically. Immunoblotting was performed on protein markers to confirm activation of mTORC1 downstream targets and of the unfolded protein response. Histologic analysis were performed to assess structural changes. Serial echocardiograms were performed to evaluate cardiac function. The results indicate that chronic mTORC1 activation through inducible, cardiac-specific deletion of TSC2 is accompanied by G6P accumulation and metabolic remodeling. Metabolic remodeling precedes structural and functional remodeling. We suggest that in the heart, sustained mTORC1 activation is a key driver of metabolic and structural remodeling.


2020 ◽  
Vol 27 ◽  
Author(s):  
Naser-Aldin Lashgari ◽  
Nazanin Momeni Roudsari ◽  
Saeideh Momtaz ◽  
Negar Ghanaatian ◽  
Parichehr Kohansal ◽  
...  

: Inflammatory bowel disease (IBD) is a general term for a group of chronic and progressive disorders. Several cellular and biomolecular pathways are implicated in the pathogenesis of IBD, yet the etiology is unclear. Activation of the mammalian target of rapamycin (mTOR) pathway in the intestinal epithelial cells was also shown to induce inflammation. This review focuses on the inhibition of the mTOR signaling pathway and its potential application in treating IBD. We also provide an overview on plant-derived compounds that are beneficial for the IBD management through modulation of the mTOR pathway. Data were extracted from clinical, in vitro and in vivo studies published in English between 1995 and May 2019, which were collected from PubMed, Google Scholar, Scopus and Cochrane library databases. Results of various studies implied that inhibition of the mTOR signaling pathway downregulates the inflammatory processes and cytokines involved in IBD. In this context, a number of natural products might reverse the pathological features of the disease. Furthermore, mTOR provides a novel drug target for IBD. Comprehensive clinical studies are required to confirm the efficacy of mTOR inhibitors in treating IBD.


Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582093422 ◽  
Author(s):  
Michael N. Moore

Autophagy has been strongly linked with hormesis, however, it is only relatively recently that the mechanistic basis underlying this association has begun to emerge. Lysosomal autophagy is a group of processes that degrade proteins, protein aggregates, membranes, organelles, segregated regions of cytoplasm, and even parts of the nucleus in eukaryotic cells. These degradative processes are evolutionarily very ancient and provide a survival capability for cells that are stressed or injured. Autophagy and autophagic dysfunction have been linked with many aspects of cell physiology and pathology in disease processes; and there is now intense interest in identifying various therapeutic strategies involving its regulation. The main regulatory pathway for augmented autophagy is the mechanistic target of rapamycin (mTOR) cell signaling, although other pathways can be involved, such as 5′-adenosine monophosphate-activated protein kinase. Mechanistic target of rapamycin is a key player in the many highly interconnected intracellular signaling pathways and is responsible for the control of cell growth among other processes. Inhibition of mTOR (specifically dephosphorylation of mTOR complex 1) triggers augmented autophagy and the search is on the find inhibitors that can induce hormetic responses that may be suitable for treating many diseases, including many cancers, type 2 diabetes, and age-related neurodegenerative conditions.


Sign in / Sign up

Export Citation Format

Share Document