Effects of mechanistic target of rapamycin signaling pathway on the estrogen-mediated NaPi-IIb protein expression in pig small intestinal epithelial cells1

2016 ◽  
Vol 94 (suppl_3) ◽  
pp. 303-306
Author(s):  
R. J. Fang ◽  
Z. F. Xiang ◽  
L. C. Hu ◽  
W. Q. Su ◽  
X. P. Tang ◽  
...  
Author(s):  
Fredrick J. Rosario ◽  
Amy Catherine Kelly ◽  
Madhulika B. Gupta ◽  
Theresa L. Powell ◽  
Laura Cox ◽  
...  

Mechanistic Target of Rapamycin Complex 2 (mTORC2) regulates placental amino acid and folate transport. However, the role of mTORC2 in modulating other placental functions is largely unexplored. We used a gene array following the silencing of rictor to identify genes regulated by mTORC2 in primary human trophoblast (PHT) cells. Four hundred and nine genes were differentially expressed; 102 genes were down-regulated and 307 up-regulated. Pathway analyses demonstrated that inhibition of mTORC2 resulted in increased expression of genes encoding for pro-inflammatory IL-6, VEGF-A, leptin, and inflammatory signaling (SAPK/JNK). Furthermore, down-regulated genes were functionally enriched in genes involved in angiogenesis (Osteopontin) and multivitamin transport (SLC5A6). In addition, the protein expression of leptin, VEGFA, IL-6 was increased and negatively correlated to mTORC2 signaling in human placentas collected from pregnancies complicated by intrauterine growth restriction (IUGR). In contrast, the protein expression of Osteopontin and SLC5A6 was decreased and positively correlated to mTORC2 signaling in human IUGR placentas. In conclusion, mTORC2 signaling regulates trophoblast expression of genes involved in inflammation, micronutrient transport, and angiogenesis, representing novel links between mTOR signaling and multiple placental functions necessary for fetal growth and development.


2020 ◽  
Vol 318 (2) ◽  
pp. C372-C379
Author(s):  
Donna Arvans ◽  
Altayeb Alshaikh ◽  
Mohamed Bashir ◽  
Christopher Weber ◽  
Hatim Hassan

Most kidney stones are composed of calcium oxalate, and small increases in urine oxalate enhance the stone risk. The mammalian intestine plays a crucial role in oxalate homeostasis, and we had recently reported that Oxalobacter-derived factors stimulate oxalate transport by human intestinal Caco2-BBE (C2) cells through PKA activation. We therefore evaluated whether intestinal oxalate transport is directly regulated by activation of the PKA signaling pathway. To this end, PKA was activated with forskolin and IBMX (F/I). F/I significantly stimulated (3.7-fold) [14C]oxalate transport by C2 cells [≥49% of which is mediated by the oxalate transporter SLC26A6 (A6)], an effect completely blocked by the PKA inhibitor H89, indicating that it is PKA dependent. PKA stimulation of intestinal oxalate transport is not cell line specific, since F/I similarly stimulated oxalate transport by the human intestinal T84 cells. F/I significantly increased (2.5-fold) A6 surface protein expression by use of immunocytochemistry. Assessing [14C]oxalate transport as a function of increasing [14C]oxalate concentration in the flux medium showed that the observed stimulation is due to a F/I-induced increase (1.8-fold) in Vmax and reduction (2-fold) in Km. siRNA knockdown studies showed that significant components of the observed stimulation are mediated by A6 and SLC26A2 (A2). Besides enhancing A6 surface protein expression, it is also possible that the observed stimulation is due to PKA-induced enhanced A6 and/or A2 transport activity in view of the reduced Km. We conclude that PKA activation positively regulates oxalate transport by intestinal epithelial cells and that PKA agonists might therapeutically impact hyperoxalemia, hyperoxaluria, and related kidney stones.


Sign in / Sign up

Export Citation Format

Share Document