scholarly journals Citrus paradisi and Citrus reticulata essential oils interfere with Pseudomonas aeruginosa quorum sensing in vivo on Caenorhabditis elegans

2021 ◽  
pp. 100160
Author(s):  
E. D'Almeida Romina ◽  
Sued Nahir ◽  
E. Arena Mario
2020 ◽  
Author(s):  
Lokender Kumar ◽  
Nathanael Brenner ◽  
John Brice ◽  
Judith Klein-Seetharaman ◽  
Susanta K. Sarkar

ABSTRACTPseudomonas aeruginosa utilizes a chemical social networking system referred to as quorum sensing (QS) to strategically co-ordinate the expression of virulence factors and biofilm formation. Virulence attributes damage the host cells, impair the host immune system, and protect bacterial cells from antibiotic attack. Thus, anti-QS agents may act as novel anti-infective therapeutics to treat P. aeruginosa infections. The present study was performed to evaluate the anti-QS, anti-biofilm, and anti-virulence activity of β-lactam antibiotics (carbapenems and cephalosporins) against P. aeruginosa. The anti-QS activity was quantified using Chromobacterium violaceum CV026 as a QS reporter strain. Our results showed that cephalosporins including cefepime (CP), ceftazidime (CF), and ceftriaxone (CT) exhibited potent anti-QS and anti-virulence activities against P. aeruginosa PAO1. These antibiotics significantly impaired motility phenotypes, decreased pyocyanin production, and reduced the biofilm formation by P. aeruginosa PAO1. In the present study, we studied isogenic QS mutants of PAO1: ΔLasR, ΔRhlR, ΔPqsA, and ΔPqsR and found that the levels of virulence factors of antibiotic-treated PAO1 were comparable to QS mutant strains. Molecular docking predicted high binding affinities of cephalosporins for the ligand-binding pocket of QS receptors (CviR, LasR, and PqsR). In addition, our results showed that the anti-microbial activity of aminoglycosides increased in the presence of sub-inhibitory concentrations (sub-MICs) of CP against P. aeruginosa PAO1. Further, utilizing Caenorhabditis elegans as an animal model for the in vivo anti-virulence effects of antibiotics, cephalosporins showed a significant increase in C. elegans survival by suppressing virulence factor production in P. aeruginosa. Thus, our results indicate that cephalosporins might provide a viable anti-virulence therapy in the treatment of infections caused by multi-drug resistant P. aeruginosa.


2019 ◽  
Vol 26 (3) ◽  
pp. 231-241 ◽  
Author(s):  
María C Luciardi ◽  
M Amparo Blázquez ◽  
María R Alberto ◽  
Elena Cartagena ◽  
Mario E Arena

Citrus essential oils are used in food to confer flavor and aromas. The citrus essential oils have been granted as GRAS and could be used as antimicrobial additives to control bacterial quorum sensing from potential food bacterial pathogens. The chemical composition and inhibitory activity of Citrus paradisi (grapefruit) essential oils obtained by cold-pressed method (EOP) and cold-pressed method followed by steam distillation, against Pseudomonas aeruginosa were determined . The GC-MS analyses of the oil indicated the amount of the essential oil components was highest with D-limonene in both cases. However, the extraction method modified the chemical composition. EOP had higher amount of coumarins and flavonoid as well as less oxygenated terpenoids. At 0.1 mg/mL essential oils were not able to modify the bacterial development but inhibited the P. aeruginosa biofilm production between 52% and 55%, sessile viability between 45% and 48%, autoinducer production and elastase activity between 30% and 56%. Limonene was less effective at inhibiting P. aeruginosa than the essential oils, suggesting a synergistic effect of the minor components. According to our results, grapefruit essential oils could be used as a food preservative to control P. aeruginosa virulence.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 401
Author(s):  
Pauline Nogaret ◽  
Fatima El El Garah ◽  
Anne-Béatrice Blanc-Potard

The opportunistic human pathogen Pseudomonas aeruginosa is responsible for a variety of acute infections and is a major cause of mortality in chronically infected cystic fibrosis patients. Due to increased resistance to antibiotics, new therapeutic strategies against P. aeruginosa are urgently needed. In this context, we aimed to develop a simple vertebrate animal model to rapidly assess in vivo drug efficacy against P. aeruginosa. Zebrafish are increasingly considered for modeling human infections caused by bacterial pathogens, which are commonly microinjected in embryos. In the present study, we established a novel protocol for zebrafish infection by P. aeruginosa based on bath immersion in 96-well plates of tail-injured embryos. The immersion method, followed by a 48-hour survey of embryo viability, was first validated to assess the virulence of P. aeruginosa wild-type PAO1 and a known attenuated mutant. We then validated its relevance for antipseudomonal drug testing by first using a clinically used antibiotic, ciprofloxacin. Secondly, we used a novel quorum sensing (QS) inhibitory molecule, N-(2-pyrimidyl)butanamide (C11), the activity of which had been validated in vitro but not previously tested in any animal model. A significant protective effect of C11 was observed on infected embryos, supporting the ability of C11 to attenuate in vivo P. aeruginosa pathogenicity. In conclusion, we present here a new and reliable method to compare the virulence of P. aeruginosa strains in vivo and to rapidly assess the efficacy of clinically relevant drugs against P. aeruginosa, including new antivirulence compounds.


Microbiology ◽  
2005 ◽  
Vol 151 (2) ◽  
pp. 373-383 ◽  
Author(s):  
Thomas Bjarnsholt ◽  
Peter Østrup Jensen ◽  
Mette Burmølle ◽  
Morten Hentzer ◽  
Janus A. J. Haagensen ◽  
...  

The opportunistic human pathogen Pseudomonas aeruginosa is the predominant micro-organism of chronic lung infections in cystic fibrosis (CF) patients. P. aeruginosa colonizes the CF lungs by forming biofilm structures in the alveoli. In the biofilm mode of growth the bacteria are highly tolerant to otherwise lethal doses of antibiotics and are protected from bactericidal activity of polymorphonuclear leukocytes (PMNs). P. aeruginosa controls the expression of many of its virulence factors by means of a cell–cell communication system termed quorum sensing (QS). In the present report it is demonstrated that biofilm bacteria in which QS is blocked either by mutation or by administration of QS inhibitory drugs are sensitive to treatment with tobramycin and H2O2, and are readily phagocytosed by PMNs, in contrast to bacteria with functional QS systems. In contrast to the wild-type, QS-deficient biofilms led to an immediate respiratory-burst activation of the PMNs in vitro. In vivo QS-deficient mutants provoked a higher degree of inflammation. It is suggested that quorum signals and QS-inhibitory drugs play direct and opposite roles in this process. Consequently, the faster and highly efficient clearance of QS-deficient bacteria in vivo is probably a two-sided phenomenon: down regulation of virulence and activation of the innate immune system. These data also suggest that a combination of the action of PMNs and QS inhibitors along with conventional antibiotics would eliminate the biofilm-forming bacteria before a chronic infection is established.


Microbiology ◽  
2007 ◽  
Vol 153 (7) ◽  
pp. 2312-2320 ◽  
Author(s):  
Louise D Christensen ◽  
Claus Moser ◽  
Peter Ø Jensen ◽  
Thomas B Rasmussen ◽  
Lars Christophersen ◽  
...  

2022 ◽  
Author(s):  
Michelle R. Scribner ◽  
Amelia C. Stephens ◽  
Justin L. Huong ◽  
Anthony R. Richardson ◽  
Vaughn S. Cooper

The evolution of bacterial populations during infections can be influenced by various factors including available nutrients, the immune system, and competing microbes, rendering it difficult to identify the specific forces that select on evolved traits. The genomes of Pseudomonas aeruginosa isolated from the airway of patients with cystic fibrosis (CF), for example, have revealed commonly mutated genes, but which phenotypes led to their prevalence is often uncertain. Here, we focus on effects of nutritional components of the CF airway on genetic adaptations by P. aeruginosa grown in either well-mixed (planktonic) or biofilm-associated conditions. After only 80 generations of experimental evolution in a simple medium with glucose, lactate, and amino acids, all planktonic populations diversified into lineages with mutated genes common to CF infections: morA , encoding a regulator of biofilm formation, or lasR , encoding a quorum sensing regulator that modulates the expression of virulence factors. Although mutated quorum sensing is often thought to be selected in vivo due to altered virulence phenotypes or social cheating, isolates with lasR mutations demonstrated increased fitness when grown alone and outcompeted the ancestral PA14 strain. Nonsynonymous SNPs in morA increased fitness in a nutrient concentration-dependent manner during planktonic growth and surprisingly also increased biofilm production. Populations propagated in biofilm conditions also acquired mutations in loci associated with chronic infections, including lasR and cyclic-di-GMP regulators roeA and wspF . These findings demonstrate that nutrient conditions and biofilm selection are sufficient to select mutants with problematic clinical phenotypes including increased biofilm and altered quorum sensing. Importance Pseudomonas aeruginosa produces dangerous chronic infections that are known for their rapid diversification and recalcitrance to treatment. We performed evolution experiments to identify adaptations selected by two specific aspects of the CF respiratory environment: nutrient levels and surface attachment. Propagation of P. aeruginosa in nutrients present within the CF airway was sufficient to drive diversification into subpopulations with identical mutations in regulators of biofilm and quorum sensing to those arising during infection. Thus, the adaptation of opportunistic pathogens to nutrients found in the host may select mutants with phenotypes that complicate treatment and clearance of infection.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1498
Author(s):  
Guanhua Xuan ◽  
Chuanjuan Lü ◽  
Huangwei Xu ◽  
Kai Li ◽  
Huaiwei Liu ◽  
...  

Sulfane sulfur, such as inorganic and organic polysulfide (HSn− and RSn−, n > 2), is a common cellular component, produced either from hydrogen sulfide oxidation or cysteine metabolism. In Pseudomonas aeruginosa PAO1, LasR is a quorum sensing master regulator. After binding its autoinducer, LasR binds to its target DNA to activate the transcription of a suite of genes, including virulence factors. Herein, we report that the production of hydrogen sulfide and sulfane sulfur were positively correlated in P. aeruginosa PAO1, and sulfane sulfur was able to modify LasR, which generated Cys188 persulfide and trisulfide and produced a pentasulfur link between Cys201 and Cys203. The modifications did not affect LasR binding to its target DNA site, but made it several-fold more effective than unmodified LasR in activating transcription in both in vitro and in vivo assays. On the contrary, H2O2 inactivates LasR via producing a disulfide bond between Cys201 and Cys203. P. aeruginosa PAO1 had a high cellular sulfane sulfur and high LasR activity in the mid log phase and early stationary phase, but a low sulfane sulfur and low LasR activity in the declination phase. Thus, sulfane sulfur is a new signaling factor in the bacterium, adding another level of control over LasR-mediated quorum sensing and turning down the activity in old cells.


LWT ◽  
2016 ◽  
Vol 68 ◽  
pp. 373-380 ◽  
Author(s):  
María Constanza Luciardi ◽  
María Amparo Blázquez ◽  
Elena Cartagena ◽  
Alicia Bardón ◽  
Mario Eduardo Arena

Sign in / Sign up

Export Citation Format

Share Document