scholarly journals The nutritional environment is sufficient to select coexisting biofilm and quorum-sensing mutants of Pseudomonas aeruginosa

2022 ◽  
Author(s):  
Michelle R. Scribner ◽  
Amelia C. Stephens ◽  
Justin L. Huong ◽  
Anthony R. Richardson ◽  
Vaughn S. Cooper

The evolution of bacterial populations during infections can be influenced by various factors including available nutrients, the immune system, and competing microbes, rendering it difficult to identify the specific forces that select on evolved traits. The genomes of Pseudomonas aeruginosa isolated from the airway of patients with cystic fibrosis (CF), for example, have revealed commonly mutated genes, but which phenotypes led to their prevalence is often uncertain. Here, we focus on effects of nutritional components of the CF airway on genetic adaptations by P. aeruginosa grown in either well-mixed (planktonic) or biofilm-associated conditions. After only 80 generations of experimental evolution in a simple medium with glucose, lactate, and amino acids, all planktonic populations diversified into lineages with mutated genes common to CF infections: morA , encoding a regulator of biofilm formation, or lasR , encoding a quorum sensing regulator that modulates the expression of virulence factors. Although mutated quorum sensing is often thought to be selected in vivo due to altered virulence phenotypes or social cheating, isolates with lasR mutations demonstrated increased fitness when grown alone and outcompeted the ancestral PA14 strain. Nonsynonymous SNPs in morA increased fitness in a nutrient concentration-dependent manner during planktonic growth and surprisingly also increased biofilm production. Populations propagated in biofilm conditions also acquired mutations in loci associated with chronic infections, including lasR and cyclic-di-GMP regulators roeA and wspF . These findings demonstrate that nutrient conditions and biofilm selection are sufficient to select mutants with problematic clinical phenotypes including increased biofilm and altered quorum sensing. Importance Pseudomonas aeruginosa produces dangerous chronic infections that are known for their rapid diversification and recalcitrance to treatment. We performed evolution experiments to identify adaptations selected by two specific aspects of the CF respiratory environment: nutrient levels and surface attachment. Propagation of P. aeruginosa in nutrients present within the CF airway was sufficient to drive diversification into subpopulations with identical mutations in regulators of biofilm and quorum sensing to those arising during infection. Thus, the adaptation of opportunistic pathogens to nutrients found in the host may select mutants with phenotypes that complicate treatment and clearance of infection.

2021 ◽  
Author(s):  
Michelle R Scribner ◽  
Amelia Carole Stephens ◽  
Justin L Huong ◽  
Anthony R. Richardson ◽  
Vaughn S Cooper

The evolution of bacterial populations during infections can be influenced by various factors including available nutrients, the immune system, and competing microbes, rendering it difficult to identify the specific forces that select on evolved traits. The genomes of Pseudomonas aeruginosa isolated from the airway of patients with cystic fibrosis (CF), for example, have revealed commonly mutated genes, but which phenotypes led to their prevalence is often uncertain. Here, we focus on effects of nutritional components of the CF airway on genetic adaptations by P. aeruginosa grown in either well-mixed (planktonic) or biofilm-associated conditions. After only 80 generations of experimental evolution in a simple medium with glucose, lactate, and amino acids, all planktonic populations diversified into lineages with mutated genes common to CF infections: morA, encoding a regulator of biofilm formation, or lasR, encoding a quorum sensing regulator that modulates the expression of virulence factors. Although mutated quorum sensing is often thought to be selected in vivo due to altered virulence phenotypes or social cheating, isolates with lasR mutations demonstrated increased fitness when grown alone and outcompeted the ancestral PA14 strain. Nonsynonymous SNPs in morA increased fitness in a nutrient concentration-dependent manner during planktonic growth and surprisingly also increased biofilm production. Populations propagated in biofilm conditions also acquired mutations in loci associated with chronic infections, including lasR and cyclic-di-GMP regulators roeA and wspF. These findings demonstrate that nutrient conditions and biofilm selection are alone sufficient to select mutants with problematic clinical phenotypes including increased biofilm and altered quorum sensing.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hongping Yin ◽  
Yifeng Deng ◽  
Huafu Wang ◽  
Wugao Liu ◽  
Xiyi Zhuang ◽  
...  

Abstract Green tea, a water extract of non-fermented leaves of Camellia sinensis L., is one of the nonalcoholic beverages in China. It is becoming increasingly popular worldwide, because of its refreshing, mild stimulant and medicinal properties. Here we examined the quorum sensing inhibitory potentials of tea polyphenols (TP) as antivirulence compounds both in vitro and in vivo. Biosensor assay data suggested minimum inhibitory concentrations (MICs) of TP against selected pathogens were 6.25 ~ 12.5 mg/mL. At sub-MIC, TP can specifically inhibit the production of violacein in Chromobacterium violaceum 12472 with almost 98% reduction at 3.125 mg/mL without affecting its growth rate. Moreover, TP exhibited inhibitory effects on virulence phenotypes regulated by QS in Pseudomonas aeruginosa. The total proteolytic activity, elastase, swarming motility and biofilm formation were reduced in a concentration-dependent manner. In vivo, TP treatment resulted in the reduction of P. aeruginosa pathogenicity in Caenorhabditis elegans. When its concentration was 3.125 mg/mL, the survival rate reached 63.3%. In the excision wound infection model, the wound contraction percentage in treatment groups was relatively increased and the colony-forming units (CFU) in the wound area were significantly decreased. These results suggested that TP could be developed as a novel non-antibiotic QS inhibitor without killing the bacteria but as an antivirulence compound to control bacterial infection.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 240 ◽  
Author(s):  
Adriana Vollaro ◽  
Anna Esposito ◽  
Eliana Pia Esposito ◽  
Raffaele Zarrilli ◽  
Annalisa Guaragna ◽  
...  

Pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1 (PYED-1), a heterocyclic corticosteroid derivative of deflazacort, exhibits broad-spectrum antibacterial activity against Gram-negative and Gram-positive bacteria. Here, we investigated the effect of PYED-1 on the biofilms of Staphylococcus aureus, an etiological agent of biofilm-based chronic infections such as osteomyelitis, indwelling medical device infections, periodontitis, chronic wound infections, and endocarditis. PYED-1 caused a strong reduction in biofilm formation in a concentration dependent manner. Furthermore, it was also able to completely remove the preformed biofilm. Transcriptional analysis performed on the established biofilm revealed that PYED-1 downregulates the expression of genes related to quorum sensing (agrA, RNAIII, hld, psm, and sarA), surface proteins (clfB and fnbB), secreted toxins (hla, hlb, and lukD), and capsular polysaccharides (capC). The expression of genes that encode two main global regulators, sigB and saeR, was also significantly inhibited after treatment with PYED-1. In conclusion, PYED-1 not only effectively inhibited biofilm formation, but also eradicated preformed biofilms of S. aureus, modulating the expression of genes related to quorum sensing, surface and secreted proteins, and capsular polysaccharides. These results indicated that PYED-1 may have great potential as an effective antibiofilm agent to prevent S. aureus biofilm-associated infections.


2009 ◽  
Vol 53 (6) ◽  
pp. 2432-2443 ◽  
Author(s):  
Liang Yang ◽  
Morten Theil Rybtke ◽  
Tim Holm Jakobsen ◽  
Morten Hentzer ◽  
Thomas Bjarnsholt ◽  
...  

ABSTRACT Attenuation of Pseudomonas aeruginosa virulence by the use of small-molecule quorum-sensing inhibitors (referred to as the antipathogenic drug principle) is likely to play a role in future treatment strategies for chronic infections. In this study, structure-based virtual screening was used in a search for putative quorum-sensing inhibitors from a database comprising approved drugs and natural compounds. The database was built from compounds which showed structural similarities to previously reported quorum-sensing inhibitors, the ligand of the P. aeruginosa quorum-sensing receptor LasR, and a quorum-sensing receptor agonist. Six top-ranking compounds, all recognized drugs, were identified and tested for quorum-sensing-inhibitory activity. Three compounds, salicylic acid, nifuroxazide, and chlorzoxazone, showed significant inhibition of quorum-sensing-regulated gene expression and related phenotypes in a dose-dependent manner. These results suggest that the identified compounds have the potential to be used as antipathogenic drugs. Furthermore, the results indicate that structure-based virtual screening is an efficient tool in the search for novel compounds to combat bacterial infections.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dan Yang ◽  
Suqi Hao ◽  
Ling Zhao ◽  
Fei Shi ◽  
Gang Ye ◽  
...  

With the prevalence of multidrug-resistant bacteria and clinical -acquired pathogenic infections, the development of quorum-sensing (QS) interfering agents is one of the most potential strategies to combat bacterial infections and antibiotic resistance. Chinese herbal medicines constitute a valuable bank of resources for the identification of QS inhibitors. Accordingly, in this research, some compounds were tested for QS inhibition using indicator strains. Paeonol is a phenolic compound, which can effectively reduce the production of violacein without affecting its growth in Chromobacterium violaceum ATCC 12472, indicating its excellent anti-QS activity. This study assessed the anti-biofilm activity of paeonol against Gram-negative pathogens and investigated the effect of paeonol on QS-regulated virulence factors in Pseudomonas aeruginosa. A Caenorhabditis elegans infection model was used to explore the anti-infection ability of paeonol in vivo. Paeonol exhibited an effective anti-biofilm activity against Gram-negative bacteria. The ability of paeonol to interfere with the AHL-mediated quorum sensing systems of P. aeruginosa was determined, found that it could attenuate biofilm formation, and synthesis of pyocyanin, protease, elastase, motility, and AHL signaling molecule in a concentration- and time-dependent manner. Moreover, paeonol could significantly downregulate the transcription level of the QS-related genes of P. aeruginosa including lasI/R, rhlI/R, pqs/mvfR, as well as mediated its virulence factors, lasA, lasB, rhlA, rhlC, phzA, phzM, phzH, and phzS. In vivo studies revealed that paeonol could reduce the pathogenicity of P. aeruginosa and enhance the survival rate of C. elegans, showing a moderate protective effect on C. elegans. Collectively, these findings suggest that paeonol attenuates bacterial virulence and infection of P. aeruginosa and that further research elucidating the anti-QS mechanism of this compound in vivo is warranted.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 401
Author(s):  
Pauline Nogaret ◽  
Fatima El El Garah ◽  
Anne-Béatrice Blanc-Potard

The opportunistic human pathogen Pseudomonas aeruginosa is responsible for a variety of acute infections and is a major cause of mortality in chronically infected cystic fibrosis patients. Due to increased resistance to antibiotics, new therapeutic strategies against P. aeruginosa are urgently needed. In this context, we aimed to develop a simple vertebrate animal model to rapidly assess in vivo drug efficacy against P. aeruginosa. Zebrafish are increasingly considered for modeling human infections caused by bacterial pathogens, which are commonly microinjected in embryos. In the present study, we established a novel protocol for zebrafish infection by P. aeruginosa based on bath immersion in 96-well plates of tail-injured embryos. The immersion method, followed by a 48-hour survey of embryo viability, was first validated to assess the virulence of P. aeruginosa wild-type PAO1 and a known attenuated mutant. We then validated its relevance for antipseudomonal drug testing by first using a clinically used antibiotic, ciprofloxacin. Secondly, we used a novel quorum sensing (QS) inhibitory molecule, N-(2-pyrimidyl)butanamide (C11), the activity of which had been validated in vitro but not previously tested in any animal model. A significant protective effect of C11 was observed on infected embryos, supporting the ability of C11 to attenuate in vivo P. aeruginosa pathogenicity. In conclusion, we present here a new and reliable method to compare the virulence of P. aeruginosa strains in vivo and to rapidly assess the efficacy of clinically relevant drugs against P. aeruginosa, including new antivirulence compounds.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 745
Author(s):  
Melaine González-García ◽  
Fidel Morales-Vicente ◽  
Erbio Díaz Pico ◽  
Hilda Garay ◽  
Daniel G. Rivera ◽  
...  

Cm-p5 is a snail-derived antimicrobial peptide, which demonstrated antifungal activity against the pathogenic strains of Candida albicans. Previously we synthetized a cyclic monomer as well as a parallel and an antiparallel dimer of Cm-p5 with improved antifungal activity. Considering the alarming increase of microbial resistance to conventional antibiotics, here we evaluated the antimicrobial activity of these derivatives against multiresistant and problematic bacteria and against important viral agents. The three peptides showed a moderate activity against Pseudomonas aeruginosa, Klebsiella pneumoniae Extended Spectrum β-Lactamase (ESBL), and Streptococcus agalactiae, with MIC values > 100 µg/mL. They exerted a considerable activity with MIC values between 25–50 µg/mL against Acinetobacter baumanii and Enterococcus faecium. In addition, the two dimers showed a moderate activity against Pseudomonas aeruginosa PA14. The three Cm-p5 derivatives inhibited a virulent extracellular strain of Mycobacterium tuberculosis, in a dose-dependent manner. Moreover, they inhibited Herpes Simplex Virus 2 (HSV-2) infection in a concentration-dependent manner, but had no effect on infection by the Zika Virus (ZIKV) or pseudoparticles of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). At concentrations of >100 µg/mL, the three new Cm-p5 derivatives showed toxicity on different eukaryotic cells tested. Considering a certain cell toxicity but a potential interesting activity against the multiresistant strains of bacteria and HSV-2, our compounds require future structural optimization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yorick Janssens ◽  
Nathan Debunne ◽  
Anton De Spiegeleer ◽  
Evelien Wynendaele ◽  
Marta Planas ◽  
...  

AbstractQuorum sensing peptides (QSPs) are bacterial peptides produced by Gram-positive bacteria to communicate with their peers in a cell-density dependent manner. These peptides do not only act as interbacterial communication signals, but can also have effects on the host. Compelling evidence demonstrates the presence of a gut-brain axis and more specifically, the role of the gut microbiota in microglial functioning. The aim of this study is to investigate microglial activating properties of a selected QSP (PapRIV) which is produced by Bacillus cereus species. PapRIV showed in vitro activating properties of BV-2 microglia cells and was able to cross the in vitro Caco-2 cell model and reach the brain. In vivo peptide presence was also demonstrated in mouse plasma. The peptide caused induction of IL-6, TNFα and ROS expression and increased the fraction of ameboid BV-2 microglia cells in an NF-κB dependent manner. Different metabolites were identified in serum, of which the main metabolite still remained active. PapRIV is thus able to cross the gastro-intestinal tract and the blood–brain barrier and shows in vitro activating properties in BV-2 microglia cells, hereby indicating a potential role of this quorum sensing peptide in gut-brain interaction.


Sign in / Sign up

Export Citation Format

Share Document