A new theoretical approach of the electronic AC conduction in chacogenides. An insight on the CBH model in the domain of low temperatures

2019 ◽  
Vol 564 ◽  
pp. 172-178
Author(s):  
H. Abassi ◽  
N. Bouguila
2013 ◽  
Vol 06 (03) ◽  
pp. 1350032 ◽  
Author(s):  
LINGANABOINA SRINIVASA RAO ◽  
NALLURI VEERAIAH ◽  
TUMU VENKATAPPA RAO

The glass composition 40 Li 2 O –5 WO 3–(55−x) B 2 O 3: x V 2 O 5 for x = 0.2, 0.4, 0.6 and 0.8 is chosen for the present study. The glass samples were synthesized by conventional melt-quenching technique. The dielectric properties such as constant (ε′), loss (tan δ) and ac conductivity (σac) are carried out as a function of temperature (30–270°C) and frequency (102–105 Hz). The glass sample (at x = 0.6) exhibited highest ac conductivity (σac) and spreading factor (β) among all the samples. All glasses exhibited mixed conduction (both electronic and ionic) at high temperatures. The frequency exponent s denotes the ac conduction mechanism is associated with both QMT model (at low temperatures) and CBH model (at high temperatures).


2019 ◽  
Vol 23 (11n12) ◽  
pp. 1622-1628
Author(s):  
Zahra Khozaee ◽  
Isabelle Chambrier ◽  
L. Sosa Vargas ◽  
Andrew N. Cammidge ◽  
Asim K. Ray

A unique organic/inorganic nanocomposite of non-aggregated lead sulphide (PbS) quantum dots (QDs) dispersed within a spun film of non-peripherally octakis(hexyl)-substituted metal-free phthalocyanine (C[Formula: see text]H[Formula: see text]Pc) has been prepared at room temperature by a simple and low-cost method. The frequency response of alternating current (AC) conduction in a 130 nm thick C[Formula: see text]H[Formula: see text]Pc /PbS film sandwiched between the indium-tin-oxide (ITO) and aluminum (Al) electrodes is found to obey the universal power-law. The cryogenic study of AC conduction reveals that the correlated barrier hopping (CBH) model closely fits to the experimental data at temperatures below 240 K. The parameters obtained by fitting the CBH model point out that the hopping process cannot take place directly between neighboring PbS QDs but involves the localized states within the matrix.


Author(s):  
E. Knapek ◽  
H. Formanek ◽  
G. Lefranc ◽  
I. Dietrich

A few years ago results on cryoprotection of L-valine were reported, where the values of the critical fluence De i.e, the electron exposure which decreases the intensity of the diffraction reflections by a factor e, amounted to the order of 2000 + 1000 e/nm2. In the meantime a discrepancy arose, since several groups published De values between 100 e/nm2 and 1200 e/nm2 /1 - 4/. This disagreement and particularly the wide spread of the results induced us to investigate more thoroughly the behaviour of organic crystals at very low temperatures during electron irradiation.For this purpose large L-valine crystals with homogenuous thickness were deposited on holey carbon films, thin carbon films or Au-coated holey carbon films. These specimens were cooled down to nearly liquid helium temperature in an electron microscope with a superconducting lens system and irradiated with 200 keU-electrons. The progress of radiation damage under different preparation conditions has been observed with series of electron diffraction patterns and direct images of extinction contours.


Author(s):  
H.A. Cohen ◽  
W. Chiu

The goal of imaging the finest detail possible in biological specimens leads to contradictory requirements for the choice of an electron dose. The dose should be as low as possible to minimize object damage, yet as high as possible to optimize image statistics. For specimens that are protected by low temperatures or for which the low resolution associated with negative stain is acceptable, the first condition may be partially relaxed, allowing the use of (for example) 6 to 10 e/Å2. However, this medium dose is marginal for obtaining the contrast transfer function (CTF) of the microscope, which is necessary to allow phase corrections to the image. We have explored two parameters that affect the CTF under medium dose conditions.Figure 1 displays the CTF for carbon (C, row 1) and triafol plus carbon (T+C, row 2). For any column, the images to which the CTF correspond were from a carbon covered hole (C) and the adjacent triafol plus carbon support film (T+C), both recorded on the same micrograph; therefore the imaging parameters of defocus, illumination angle, and electron statistics were identical.


Author(s):  
F. H. Louchet ◽  
L. P. Kubin

Experiments have been carried out on the 3 MeV electron microscope in Toulouse. The low temperature straining holder has been previously described Images given by an image intensifier are recorded on magnetic tape.The microtensile niobium samples are cut in a plane with the two operative slip directions [111] and lying in the foil plane. The tensile axis is near [011].Our results concern:- The transition temperature of niobium near 220 K: at this temperature and below an increasing difference appears between the mobilities of the screw and edge portions of dislocations loops. Source operation and interactions between screw dislocations of different slip system have been recorded.


Author(s):  
Marcos F. Maestre

Recently we have developed a form of polarization microscopy that forms images using optical properties that have previously been limited to macroscopic samples. This has given us a new window into the distribution of structure on a microscopic scale. We have coined the name differential polarization microscopy to identify the images obtained that are due to certain polarization dependent effects. Differential polarization microscopy has its origins in various spectroscopic techniques that have been used to study longer range structures in solution as well as solids. The differential scattering of circularly polarized light has been shown to be dependent on the long range chiral order, both theoretically and experimentally. The same theoretical approach was used to show that images due to differential scattering of circularly polarized light will give images dependent on chiral structures. With large helices (greater than the wavelength of light) the pitch and radius of the helix could be measured directly from these images.


Author(s):  
J. A. Traquair ◽  
E. G. Kokko

With the advent of improved dehydration techniques, scanning electron microscopy has become routine in anatomical studies of fungi. Fine structure of hyphae and spore surfaces has been illustrated for many hyphomycetes, and yet, the ultrastructure of the ubiquitous soil fungus, Geomyces pannorus (Link) Sigler & Carmichael has been neglected. This presentation shows that scanning and transmission electron microscopical data must be correlated in resolving septal structure and conidial release in G. pannorus.Although it is reported to be cellulolytic but not keratinolytic, G. pannorus is found on human skin, animals, birds, mushrooms, dung, roots, and frozen meat in addition to various organic soils. In fact, it readily adapts to growth at low temperatures.


Author(s):  
Alain Claverie ◽  
Zuzanna Liliental-Weber

GaAs layers grown by MBE at low temperatures (in the 200°C range, LT-GaAs) have been reported to have very interesting electronic and transport properties. Previous studies have shown that, before annealing, the crystalline quality of the layers is related to the growth temperature. Lowering the temperature or increasing the layer thickness generally results in some columnar polycrystalline growth. For the best “temperature-thickness” combinations, the layers may be very As rich (up to 1.25%) resulting in an up to 0.15% increase of the lattice parameter, consistent with the excess As. Only after annealing are the technologically important semi-insulating properties of these layers observed. When annealed in As atmosphere at about 600°C a decrease of the lattice parameter to the substrate value is observed. TEM studies show formation of precipitates which are supposed to be As related since the average As concentration remains almost unchanged upon annealing.


Author(s):  
Thao A. Nguyen

It is well known that the large deviations from stoichiometry in iron sulfide compounds, Fe1-xS (0≤x≤0.125), are accommodated by iron vacancies which order and form superstructures at low temperatures. Although the ordering of the iron vacancies has been well established, the modes of vacancy ordering, hence superstructures, as a function of composition and temperature are still the subject of much controversy. This investigation gives direct evidence from many-beam lattice images of Fe1-xS that the 4C superstructure transforms into the 3C superstructure (Fig. 1) rather than the MC phase as previously suggested. Also observed are an intrinsic stacking fault in the sulfur sublattice and two different types of vacancy-ordering antiphase boundaries. Evidence from selective area optical diffractograms suggests that these planar defects complicate the diffraction pattern greatly.


Sign in / Sign up

Export Citation Format

Share Document