Comparative metabolomics analysis of the response to cold stress of resistant and susceptible Tibetan hulless barley (Hordeum distichon)

2020 ◽  
Vol 174 ◽  
pp. 112346 ◽  
Author(s):  
Chunbao Yang ◽  
Haizhen Yang ◽  
Qijun Xu ◽  
Yulin Wang ◽  
Zha Sang ◽  
...  
2021 ◽  
Vol 19 (1) ◽  
pp. 1-8
Author(s):  
Tangwei Zhang ◽  
Jialin Ma ◽  
Xuelian Wu ◽  
Zhihua Hao ◽  
Ci Dun ◽  
...  

Abstract Tibetan hulless barley (“qingke” in Chinese) is a valuable food in Tibet. Purple qingke (PQK) and black qingke (BQK), two special pigmented types of hulless barley, have traditionally been widely cultivated and consumed in Tibet for thousands of years. The composition and contents of anthocyanins of two cultivars are unknown. This study aimed to explore the composition and contents of anthocyanins of two cultivars and their antioxidant capacities. Six anthocyanins were identified by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry from barley, most of the anthocyanins were acylated by malonyl group. The total anthocyanin contents ranged from 141 to 2,304 μg/g in PQK and from 248.7 to 2902.9 μg/g in BQK. Furthermore, qingke has strong antioxidant activity against DPPH, ABTS˙+, and FRAP. Qingke may be useful for treating or preventing diseases caused by the overproduction of radicals.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10740
Author(s):  
Tianliang Chang ◽  
Yi Zhao ◽  
Hongyan He ◽  
Qianqian Xi ◽  
Jiayi Fu ◽  
...  

Background Melatonin is a hormone substance that exists in various living organisms. Since it was discovered in the pineal gland of cattle in 1956, the function of melatonin in animals has been roughly clarified. Nevertheless, in plants, the research on melatonin is still insufficient. Hulless barley (Hordeum vulgare L. var. nudum hook. f.) is a crop that originates from cultivated barley in the east, usually grown on the Qinghai-Tibet Plateau, becoming the most important food crop in this area. Although the genome and transcriptome research of highland barley has gradually increased recently years, there are still many problems about how hulless barley adapts to the cold climate of the Qinghai-Tibet Plateau. Methods In this study, we set three temperature conditions 25°C, 15°C, 5°C hulless barley seedlings, and at the same time soaked the hulless barley seeds with a 1 µM melatonin solution for 12 hours before the hulless barley seeds germinated. Afterwards, the growth and physiological indicators of hulless barley seedlings under different treatment conditions were determined. Meanwhile, the qRT-PCR method was used to determine the transcription level of the hulless barley circadian clock genes under different treatment conditions under continuous light conditions. Results The results showed the possible mechanism by which melatonin pretreatment can promote the growth of hulless barley under cold stress conditions by studying the effect of melatonin on the rhythm of the circadian clock system and some physiological indicators. The results revealed that the application of 1 µM melatonin could alleviate the growth inhibition of hulless barley seedlings caused by cold stress. In addition, exogenous melatonin could also restore the circadian rhythmic oscillation of circadian clock genes, such as HvCCA1 and HvTOC1, whose circadian rhythmic phenotypes were lost due to environmental cold stress. Additionally, the results confirmed that exogenous melatonin even reduced the accumulation of key physiological indicators under cold stress, including malondialdehyde and soluble sugars. Discussion Overall, these findings revealed an important mechanism that exogenous melatonin alleviated the inhibition of plant vegetative growths either by restoring the disrupted circadian rhythmic expression oscillations of clock genes, or by regulating the accumulation profiles of pivotal physiological indicators under cold stress.


2006 ◽  
Vol 61 (3-4) ◽  
pp. 245-250 ◽  
Author(s):  
Xin Sun ◽  
Shu Yuan ◽  
Hong-Hui Lin

The effects of salicylic acid (SA) on the accumulation of dehydrins in leaves of Tibetan hulless barley seedlings under water stress were investigated. The results indicated that SA decreased the levels of the four dehydrin-like proteins induced by water stress. The concentrations of these dehydrin-like proteins increased under water stress. However, their levels in SA-pretreated seedlings were always lower than in those receiving only water stress. Our results also indicated that the levels of dehydrin-like proteins decreased as the SA concentration increased. In SA-pretreated seedlings, electrolyte leakage, MDA and H2O2 content were rather higher than in seedlings receiving only water stress. By these results, we suggest that lower levels of dehydrin-like proteins in seedlings with SA treatment may be due to the greater accumulation of H2O2 induced by SA, which causes more oxidative injury under water stress.


Sign in / Sign up

Export Citation Format

Share Document