Two new isodrimene sesquiterpenes from the fungal culture broth of Polyporus arcularius

2013 ◽  
Vol 6 (4) ◽  
pp. 598-601 ◽  
Author(s):  
Junnosuke Otaka ◽  
Hiroshi Araya
2004 ◽  
Vol 52 (6) ◽  
pp. 1423-1426 ◽  
Author(s):  
Astrid Michelitsch ◽  
Ulla Rückert ◽  
Anna Rittmannsberger ◽  
Christoph Seger ◽  
Hermann Strasser ◽  
...  

Marine Drugs ◽  
2020 ◽  
Vol 18 (9) ◽  
pp. 436
Author(s):  
Ji-Yeon Hwang ◽  
Sung Chul Park ◽  
Woong Sub Byun ◽  
Dong-Chan Oh ◽  
Sang Kook Lee ◽  
...  

Three new bianthraquinones, alterporriol Z1–Z3 (1–3), along with three known compounds of the same structural class, were isolated from the culture broth of a marine-derived Stemphylium sp. fungus. Based upon the results of spectroscopic analyses and ECD measurements, the structures of new compounds were determined to be the 6-6′- (1 and 2) and 1-5′- (3) C–C connected pseudo-dimeric anthraquinones, respectively. Three new meroterpenoids, tricycloalterfurenes E–G (7–9), isolated together with the bianthraquinones from the same fungal culture broth, were structurally elucidated by combined spectroscopic methods. The relative and absolute configurations of these meroterpenoids were determined by modified Mosher’s, phenylglycine methyl ester (PGME), and computational methods. The bianthraquinones significantly inhibited nitric oxide (NO) production and suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW 264.7 cells.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 506a-506
Author(s):  
L.A. Klein ◽  
M.T. Windham ◽  
R.N. Trigiano

Microshoot and callus cultures of Cornus florida (flowering dogwood), which were grown on woody plant medium amended with BA, were inoculated with Microsphaera pulchra (an obligate plant parasite) by gently shaking infected leaves bearing numerous conidia over the tissue. Culture dishes were sealed with parafilm and incubated at 24 °C with 25 mol·m–2·s–1 provided by cool fluorescent bulbs for 15 h. Cultures were examined with a dissecting scope every 24 h and cultures transferred when contaminating fungi were present. Specimens were prepared light microscopy and SEM. The fungus infected individual callus cells, but did not sporulate. In contrast, powdery mildew was well-established (both primary and secondary hyphae) in 70% of the microshoot cultures after 6 days and sporulated on 20% by 7 to 8 days. The cellular relationship between host and pathogen in vitro was similar to that found in greenhouse-grown plants. This technique has possible applications in maintaining fungal culture collections and studying host–pathogen relationships under more stringently controlled conditions.


2019 ◽  
Vol 15 (4) ◽  
pp. 442-452
Author(s):  
Kashyap Kumar Dubey ◽  
Punit Kumar

Background: Malaria is one of the life threatening diseases which is caused by Plasmodium sp. of protozoa and uses Anopheles mosquitos as vector. Plasmodium vivax and Plasmodium falciparum are common form of malaria parasite. Artemisinin is reported for its antimalarial activities and Artemether which is a methyl ether derivative of Artemisinin, has been found effective against P. falciparum. Methods: In the present study, bioconversion of Artemisinin into Artemether was carried out experimentally and the statistical tools like experimental factorial design and Response Surface Methodology were used to find optimal conditions (concentration of Artemisinin, age of inoculum, temperature & pH) using Cunninghamella echinulata var. elegans. Experimental conditions for maximum product recovery from culture broth were also optimized using various polar and non-polar solvents for extraction. Artemether purity was analyzed by reverse-phase HPLC. Experimental data was fitted in a quadratic model and effect of various parameters was analyzed. Results: It was found that bioconversion of Artemisinin into Artemether is growth associated process. It was observed that molasses used as carbon source supported production of Artemether to 3.4g/L. The biomass and oxygen are key element affecting of bioconversion of Artemisinin into Artemether such as higher dissolved oxygen reduced the Artemether bioconversion. The highest bioconversion of Artemisinin into Artemether was obtained at temperature 25.5oC, 5g/L concentration of Artemisinin, at age of inoculum of 44.5 h and at pH 6.0. Model suggested the highest bioconversion of Artemisinin into Artemether was 54% at shake flask level which was near about experimental finding. An optimal condition for bioconversion was also analyzed and 64% bioconversion was obtained in 5L bioreactor. Conclusion: The outcomes of the study provided optimum conditions for bioconversion of Artemisinin into Artemether.


2021 ◽  
Vol 7 (3) ◽  
pp. 179
Author(s):  
Kai P. Hussnaetter ◽  
Magnus Philipp ◽  
Kira Müntjes ◽  
Michael Feldbrügge ◽  
Kerstin Schipper

Heterologous protein production is a highly demanded biotechnological process. Secretion of the product to the culture broth is advantageous because it drastically reduces downstream processing costs. We exploit unconventional secretion for heterologous protein expression in the fungal model microorganism Ustilago maydis. Proteins of interest are fused to carrier chitinase Cts1 for export via the fragmentation zone of dividing yeast cells in a lock-type mechanism. The kinase Don3 is essential for functional assembly of the fragmentation zone and hence, for release of Cts1-fusion proteins. Here, we are first to develop regulatory systems for unconventional protein secretion using Don3 as a gatekeeper to control when export occurs. This enables uncoupling the accumulation of biomass and protein synthesis of a product of choice from its export. Regulation was successfully established at two different levels using transcriptional and post-translational induction strategies. As a proof-of-principle, we applied autoinduction based on transcriptional don3 regulation for the production and secretion of functional anti-Gfp nanobodies. The presented developments comprise tailored solutions for differentially prized products and thus constitute another important step towards a competitive protein production platform.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S424-S424
Author(s):  
Timothy O’Dowd ◽  
Jack McHugh ◽  
Nancy Wengenack ◽  
Elitza Theel ◽  
Paschalis Vergidis

Abstract Background Blastomycosis has historically been a difficult diagnosis to establish, often initially misdiagnosed as bacterial pneumonia. Serologic assays and polymerase chain reaction (PCR) tests are available, but their performance is not well defined. The objective of this study was to characterize their performance. Methods Subjects were identified via chart review of patients diagnosed with blastomycosis from 2005 to 2020. A definitive diagnosis was based on fungal culture, histopathology, or cytology. Performance characteristics of the Blastomyces antibody enzyme linked immunosorbent assay (ELISA), immunodiffusion (ID), complement fixation (CF), urine and serum antigen ELISAs, and PCR were evaluated in patients with confirmed blastomycosis. Data on patient demographics, location of disease, and mortality was also collected. Results We identified 193 patients with blastomycosis. The mean age was 51.8 years (range, 11-84) and 73.6% of patients were male. 42.5% resided in Minnesota, 18.1% in Wisconsin, and 12.9% in Iowa. Diagnosis was based on culture in 142 (73.2%) or histopathology/cytology in 67 (34.7%) patients. Granulomatous inflammation was present in 73.1% (38/52) while 21.2% (41/193) had evidence of extrapulmonary dissemination. The antibody, ID, and CF assays were positive in 43.5% (37/85), 35.1% (33/94) and 20.5% (8/39) of patients, respectively. Sensitivity of Blastomyces PCR was 40% (4/10) in sputum and 75% (21/28) in bronchoalveolar lavage (BAL) fluid. Blastomyces urine and serum antigen tests were positive in 68% (34/50) and 50% (9/18) of cases, respectively, while the urine antigen was positive in 63.6% (7/11) of disseminated cases. Patients had a positive Histoplasma urine antigen test in 54.1% (20/37) and Aspergillus galactomannan in BAL in 34.8% (8/23) of cases. Serum beta-D-glucan test was positive in 16.7% (2/12). 90-day mortality was 21/193 (10.9%) and median time from diagnosis to death was 18 days. Conclusion In this cohort, Blastomyces urine antigen was the most sensitive noninvasive test, with similar performance in pulmonary and disseminated disease. However, its utility is limited by poor specificity due to cross-reactivity. Blastomyces PCR from BAL fluid demonstrated the highest sensitivity. Blastomyces antibody, ID, and CF had poor sensitivity. Disclosures All Authors: No reported disclosures


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 65
Author(s):  
Byeoung-Kyu Choi ◽  
Duk-Yeon Cho ◽  
Dong-Kug Choi ◽  
Phan Thi Hoai Trinh ◽  
Hee Jae Shin

Two new phomaligols, deketo-phomaligol A (1) and phomaligol E (2), together with six known compounds (3–8) were isolated from the culture broth of the marine-derived fungus Aspergillus flocculosus. Compound 1 was first isolated as a phomaligol derivative possessing a five-membered ring. The structures and absolute configurations of the new phomaligols were determined by detailed analyses of mass spectrometry (MS), nuclear magnetic resonance (NMR) data, optical rotation values and electronic circular dichroism (ECD). In addition, the absolute configurations of the known compounds 3 and 4 were confirmed by chemical oxidation and comparison of optical rotation values. Isolated compounds at a concentration of 100 μM were screened for inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 microglial cells. Among the compounds, 4 showed moderate anti-neuroinflammatory effects with an IC50 value of 56.6 μM by suppressing the production of pro-inflammatory mediators in activated microglial cells without cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document