Identification of Ipomoea batatas anti-cancer peptide (IbACP)-responsive genes in sweet potato leaves

Plant Science ◽  
2021 ◽  
Vol 305 ◽  
pp. 110849
Author(s):  
Hsin-Hung Lin ◽  
Kuan-Hung Lin ◽  
Kuan-Fu Wu ◽  
Yu-Chi Chen
Author(s):  
Xiaoyu Su ◽  
Zhenbao Jia ◽  
Fei Tao ◽  
Jiamin Shen ◽  
Jingwen Xu ◽  
...  

Phytochemical-enriched edible greens, sweet potato leaves (Ipomoea batatas L.), have become popular due to potential health benefits. However, the phytochemical contents in sweet potato leaves and their subsequent change over harvest stages and growth condition are mostly unknown. In this study, the anthocyanin profile and content in leaves of four sweet potato cultivars, i.e., white-skinned and white-fleshed Bonita, red-skinned and orange-fleshed Beauregard, red-skinned and white-fleshed Murasaki and purple-skinned and purple-fleshed P40, were evaluated. Fourteen anthocyanins were isolated and identified by HPLC-MSI/MS. The most abundant was cyanidin 3-caffeoyl-p-hydroxybenzoyl sophoroside-5-glucoside, which comprised up to 20% of the total anthocyanins. Of the young leaves (1st and 2nd slip cuttings), Bonita contained the highest anthocyanin content followed by P40. Of the mature leaves (vine stage), Beauregard had the greatest anthocyanin (592.5 ± 86.4 mg/kg DW) and total phenolic (52.2 ± 3 mg GAE/g DW). It should be noted that the lowest anthocyanin and total phenolic content of shoots were found in P40, while tubers of P40 contain the highest content of each. Furthermore, the increase in leaf anthocyanin content over the growth stages that was observed in three of the cultivars but not in P40. No significant difference of anthocyanin content was found in Beauregard leaves grown in the high tunnels when compared with that in the open field. This study demonstrated for the first time that anthocyanin levels were significantly changed in response to various growth stages but not high tunnel condition, indicating that the effect of anthocyanin biosynthesis in sweet potato leaves is highly variable and genotype specific.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anja K. Meents ◽  
Shi-Peng Chen ◽  
Michael Reichelt ◽  
Hsueh-Han Lu ◽  
Stefan Bartram ◽  
...  

AbstractPlants perceive and respond to volatile signals in their environment. Herbivore-infested plants release volatile organic compounds (VOCs) which can initiate systemic defense reactions within the plant and contribute to plant-plant communication. Here, for Ipomoea batatas (sweet potato) leaves we show that among various herbivory-induced plant volatiles, (E)-4,8–dimethyl–1,3,7-nonatriene (DMNT) had the highest abundance of all emitted compounds. This homoterpene was found being sufficient for a volatile-mediated systemic induction of defensive Sporamin protease inhibitor activity in neighboring sweet potato plants. The systemic induction is jasmonate independent and does not need any priming-related challenge. Induced emission and responsiveness to DMNT is restricted to a herbivory-resistant cultivar (Tainong 57), while a susceptible cultivar, Tainong 66, neither emitted amounts comparable to Tainong 57, nor showed reaction to DMNT. This is consistent with the finding that Spodoptera larvae feeding on DMNT-exposed cultivars gain significantly less weight on Tainong 57 compared to Tainong 66. Our results indicate a highly specific, single volatile-mediated plant-plant communication in sweet potato.


2020 ◽  
Vol 9 (4) ◽  
pp. 438
Author(s):  
Ade Maria Kristin Gultom ◽  
Ni Made Yusa ◽  
Anak Agung Istri Sri Wiadnyani

This study aims to determine the effect of solvent types on antioxidant activity of white sweet potato leaf extract (Ipomoea batatas L) and to obtain the most appropriate type of solvent to produce white sweet potato leaf extract with high antioxidant activity. The experimental design uses in this research was Completely Randomized Design (CRD) with the treatment of solvent types methanol 80%, acetone 80%, ethanol 80% and aquades. The treatment was repeated four times so obtain 16 units of the experimental. Data were analysis of variance and followed by Duncan test if the treatment has a significant effect on measured variable. The results showed that, type of solvent had an obvious effect on antioxidant activity of white sweet potato leaves. Methanol was the best solvent in extract white sweet potato leaves with followed by yield was 32.11%, total flavonoids was 226.45 mg QE / g, total tannin was 16.58 mg TAE / g, vitamin C was 119.42 mg AAE / g and antioxidant activity was 82.42%.


2017 ◽  
Vol 4 (1) ◽  
pp. 21 ◽  
Author(s):  
Ade Winda Pradana ◽  
Siti Samiyarsih ◽  
Juni Safitri Muljowati

Sweet potato (Ipomoea batatas L.) is one of alternative food sources beside than rice. Sweet potatoes are contains minerals, nutrients, sources of energy, protein, vitamins A and C. Sweet potatoes have lower productivity than rice and cassava. The low productivity of sweet potatoes due to several factors, which one of them is a leaf scab disease caused by pathogens Sphaceloma batatas Saw. The purpose of this study is to determine the character of the anatomy of sweet potato leaf cultivars that resistant and unresistant to the intensity of leaf scab disease, as well as the correlations between the anatomy character of sweet potato leaves with leaf scab disease intensity. The method used in this study is an experimental method with factorial completely randomized design. The first factor is the character of the anatomy of four cultivars sweet potato leaves, Cangkuang and Sukuh cultivars (cultivars resistant), cultivars Cilembu and Beta (unresistant cultivars). The second factor is the inoculation treatment S. batatas Saw. The parameters were observed thickness of cuticle, epidermis, mesophyll, the size (length and width) stomata, density of stomata and trikomata as well as the intensity of the disease were analyzed using analysis of variance (ANOVA). To determine the correlation between the anatomy character leaves with disease intensity using regression correlation analysis. The results showed that Cangkuang cultivar has cuticle, epidermis and mesophyll thickest. Beta cultivars have stomata size of the longest and widest. Cilembu cultivar has the highest density of stomata. Sukuh cultivars has the highest density. The anatomy characters include of a thick cuticle, epidermis, stomata size (length and width), as well as the density of stomata and trikomata correlated with intensity of leaf scab disease.


2020 ◽  
Vol 6 (2) ◽  
pp. 252
Author(s):  
Herman Irawan ◽  
Sevty Syera ◽  
Nurlaili Ekawati ◽  
Djadjat Tisnadjaja

Papaya (Carica papaya L.) and purple sweet potato (Ipomoea batatas L. Lam) are commonly used empirically as traditional medicines, including for malaria, malnutrition, fever and hemorrhagic fever. The purpose of this study was to determine the effect of differences in the concentration of ethanol solvents on the chromatogram profile and compound content. The research method began with maceration using 50%, 70%, and 96% ethanol, then thin layer chromatography test, and determination of total phenol and flavonoid levels with Elisa at λ of 750 nm and 415 nm, where the comparator used were gallic acid and quercetin . The results of total phenol levels obtained in papaya leaf extract were 3,493 mg GAE/gram and in sweet potato leaves the results were 4,786 mgGAE/mg. While the total flavonoid yield obtained from papaya leaf extract was obtained as much as 4,630 mg QE/gram and on sweetpotato which was 4,269 mgQE/mg. Characterisation of extract compound content was carried ouy by using Gas Chromatography- Mass Spectroscopy (GC-MS), where comparison of extracts used in extract combination samples are 50:50, 75:25, and 25:75. The results showed that ethanol extract contained alkaloids, flavonoids, saponins, tannins, and triterpenoids. Characterization by using GC-MS for single extract and combination extract of papaya leaves and purple sweet potato leaves obtained the main active compounds are Phytol, Neoheptadine, and n-Hexadecanoic acid.


1972 ◽  
Vol 41 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Shinjiro KATO ◽  
Hironobu KOBAYASHI ◽  
Yoshio HOZYO

2021 ◽  
Vol 888 (1) ◽  
pp. 012004
Author(s):  
Arief ◽  
N Jamarun ◽  
B Satria ◽  
R Pazla

Abstract This study aims to evaluate the milk lactose, specific gravity, and mineral of Etawa Crossbreed Dairy Goat (ECDG) fed with palm kernel cake-based concentrate (PKCC), tithonia (Tithonia diversifolia), sweet potato leaves, (Ipomoea batatas L.), and Gamal (Gliricidia sepium) as a source of roughage. The design of the experiment used was a completely randomized design (CRD) with four treatment rations and four replications. Treatment formulations are as follow A). 100% basal ration (BR); B). 50% BR + 50% Concentrate Based Palm Kernel Cake (CPKC) + tithonia; C). 50% BR+ % CPKCC + sweet potato leaves; D).50% BR + 50% CPKC + Gamal (Gliricidia sepium). The ratio of concentrate and roughage is 50:50. The concentrate ratio consists of 30% palm kernel cake, 40% tofu waste, 20% rice bran, 9 % corn, and 1% mineral. The parameters were milk lactose, specific gravity, and mineral of milk. Data were analysed by Analysis of Varian (ANOVA) and DMRT (Duncans Multiple Range Test) according to Steel and Torrie (2002). The results showed that the treatment had no significant effect (P> 0.05) on lactose, specific gravity, and mineral of milk. From this study, it can be concluded that the use of PKC, titonia, sweet potato, and gamal can replace basal ration without affecting the quality of milk (lactose, specific grafity and mineral)


2019 ◽  
Vol 2 (2) ◽  
pp. 28-30
Author(s):  
Surti Kurniasih ◽  
Dina Dyah Saputri

Purple sweet potato (Ipomoea batatas L.) leaves are extremely versatile that possesses high value. Sweet potato (Ipomoea batatas L.) leaves have secondary metabolism compounds that used as antibacterial and antifungal. The content of secondary metabolite compounds contained in plants an important role in providing antibacterial and antifungal activity so that this study was conducted to develop the utilization of purple sweet potato leaves through phytochemical screening. Phytochemical screening aims to provide an overview of the class of compounds contained in purple sweet potato leaf plants including of alkaloids, steroids-triterpenoids, saponins, flavonoids, and tannins test. Samples were taken from the local community of Bogor. The extract is made by extracting the simplicia of positive purple sweet potato leaves containing alkaloid, steroids-triterpenoids, saponins, flavonoids, and tannins. Further identification of active compounds was performed by Gass Cromatography-Mass Spectrometer (GC-MS) analysis to detect the active compound contained in purple sweet potato leaf extract more specifically. GC-MS analysis results show several active compounds including: 1.4-Benzenediol (CAS) Hydroquinone, Benzenesulfonic acid 4-hydroxy (CAS), Hexadecanoic acid (CAS) Palmitic acid.


2020 ◽  
Vol 11 (3) ◽  
pp. 4779-4783
Author(s):  
Nurdin Rahman ◽  
Fendi Pradana ◽  
St. Ika Fitrasyah ◽  
Diah Ayu Hartini ◽  
Ariani ◽  
...  

Generally, vegetables contain various vitamins, minerals, and pigments that have antioxidant activity and can neutralise free radicals before causing damage to body cells. The research aimed to analyse phytochemical, antioxidant contents, and fibre levels of leaves extract of sweet potato, cassava, and binahong. The study was experimental research utilising leaves of sweet potato, cassava, and binahong. The leaves were removed and analysed for contents of phytochemicals, antioxidant and fibre levels. Flavonoid compounds were obtained positively on the 5-blades leaves extract of Cassavas. Polyphenol and tannin were undoubtedly discovered on the single, and 3-blades leaves extract of Sweet Potatoes and also on the five, and 7-blades leaves extract of Cassavas. Interestingly, alkaloids and steroids were identified on leaves extract of binahong, the single and 3-blades leaves extract of Sweet Potatoes and also on the five and 7-blades leaves extract of Cassavas. Consequently, 7-blades leaves extract of Cassavas contains the highest level of antioxidants (IC50), which was 44.46% (90 ppm). Nonetheless, 3-blades leaves extract of Sweet Potatoes contains the lowest. The leaves extract of binahong had an average fibre content of 28.45%, followed by 5-blades cassava leaves at 26.59%, and cassava leaves at 25%. The extract of sweet potato leaves was able to be developed as a source of antioxidants. Moreover, it contained high fibres.


Sign in / Sign up

Export Citation Format

Share Document