DEM-LBM simulation of multidimensional fractionation by size and density through deterministic lateral displacement at various Reynolds numbers

2021 ◽  
Vol 385 ◽  
pp. 418-433
Author(s):  
S.R. Reinecke ◽  
S. Blahout ◽  
T. Rosemann ◽  
B. Kravets ◽  
M. Wullenweber ◽  
...  
Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 768 ◽  
Author(s):  
Jonathan Kottmeier ◽  
Maike Wullenweber ◽  
Sebastian Blahout ◽  
Jeanette Hussong ◽  
Ingo Kampen ◽  
...  

A pressure resistant and optically accessible deterministic lateral displacement (DLD) device was designed and microfabricated from silicon and glass for high-throughput fractionation of particles between 3.0 and 7.0 µm comprising array segments of varying tilt angles with a post size of 5 µm. The design was supported by computational fluid dynamic (CFD) simulations using OpenFOAM software. Simulations indicated a change in the critical particle diameter for fractionation at higher Reynolds numbers. This was experimentally confirmed by microparticle image velocimetry (µPIV) in the DLD device with tracer particles of 0.86 µm. At Reynolds numbers above 8 an asymmetric flow field pattern between posts could be observed. Furthermore, the new DLD device allowed successful fractionation of 2 µm and 5 µm fluorescent polystyrene particles at Re = 0.5–25.


Author(s):  
Brian Senf ◽  
Kawkab Ahasan ◽  
Jong-Hoon Kim

Abstract Deterministic Lateral Displacement (DLD) is an inertial size-based particle separation technique with great possibilities for use with biological sample preparation. Recently it has been shown that particle shift of a DLD is highly dependent on the Reynolds number. Additionally, particle trajectory has been characterized in a high throughput airfoil array DLD with varying Angle of Attack (AoA) in Deionized water. The AoA can be shifted negatively assisting in particle trajectory increases at low Reynolds numbers. With variations in fluid viscosity, particle trajectories compared to Reynolds value should theoretically have a constant and similar slope. In this work, various viscosities are tested in a DLD with a neutral and negative AoA to eventually characterize non-Newtonian fluids within a DLD. Due to higher viscosities increasing the internal pressure of the device, the negative AoA DLD shows promising results at higher range viscosities due to its ability to shift particles at lower Reynolds numbers.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 263
Author(s):  
Tianlong Zhang ◽  
Yigang Shen ◽  
Ryota Kiya ◽  
Dian Anggraini ◽  
Tao Tang ◽  
...  

Continuous microfluidic focusing of particles, both synthetic and biological, is significant for a wide range of applications in industry, biology and biomedicine. In this study, we demonstrate the focusing of particles in a microchannel embedded with glass grooves engraved by femtosecond pulse (fs) laser. Results showed that the laser-engraved microstructures were capable of directing polystyrene particles and mouse myoblast cells (C2C12) towards the center of the microchannel at low Reynolds numbers (Re < 1). Numerical simulation revealed that localized side-to-center secondary flows induced by grooves at the channel bottom play an essential role in particle lateral displacement. Additionally, the focusing performance proved to be dependent on the angle of grooves and the middle open space between the grooves based on both experiments and simulation. Particle sedimentation rate was found to critically influence the focusing of particles of different sizes. Taking advantage of the size-dependent particle lateral displacement, selective focusing of micrometer particles was demonstrated. This study systematically investigated continuous particle focusing in a groove-embedded microchannel. We expect that this device will be used for further applications, such as cell sensing and nanoparticle separation in biological and biomedical areas.


1960 ◽  
Vol 7 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Alar Toomre

A simple method is presented in this paper for calculating the secondary velocities, andthe lateral displacement of total pressure surfaces (i.e. the ‘displacement effect’) in the plane of symmetry ahead of an infinitely long cylinder situated normal to a steady, incompressible, slightly viscous shear flow; the cylinder is also perpendicular to the vorticity, which is assumed uniform but small. The method is based on lateral gradients of pressure, these being calculated from the primary flow alone. Profiles of the secondary velocities are obtained at several Reynolds numbers ahead of two specific cylindrical shapes: a circular cylinder, and a flat plate normal to the flow. The displacement effect is derived and, rathe surprisingly, is found to be virtually independent of the Reynolds number.


2008 ◽  
Vol 78 (4) ◽  
Author(s):  
Brian R. Long ◽  
Martin Heller ◽  
Jason P. Beech ◽  
Heiner Linke ◽  
Henrik Bruus ◽  
...  

2016 ◽  
Vol 10 (1) ◽  
pp. 014125 ◽  
Author(s):  
Naotomo Tottori ◽  
Takasi Nisisako ◽  
Jongho Park ◽  
Yasuko Yanagida ◽  
Takeshi Hatsuzawa

Author(s):  
Brian Dincau ◽  
Arian Aghilinejad ◽  
Jong-Hoon Kim ◽  
Xiaolin Chen

Deterministic lateral displacement (DLD) is a common name given to a class of continuous microfluidic separation devices that use a repeating array of pillars to selectively displace particles having a mean diameter greater than the critical diameter (Dc). This Dc is an emergent property influenced by pillar shape, size, and spacing, in addition to the suspending fluid and target particle properties. The majority of previous research in DLD applications has focused on the utilization of laminar flow in low Reynolds number (Re) regimes. While laminar flow exhibits uniform streamlines and predictable separation characteristics, this low-Re regime is dependent on relatively low fluid velocities, and may not hold true at higher processing speeds. Through numerical modeling and experimentation, we investigated high-Re flow characteristics and potential separation enhancements resulting from vortex generation within a DLD array. We used an analytical model and computational software to simulate DLD performance spanning a Re range of 1–100 at flow rates of 2–170 μL/s (0.15–10 mL/min). Each simulated DLD array configuration was composed of 60 μm cylindrical pillars with a 45 μm gap size. The experimental DLD device was fabricated using conventional soft lithography, and injected with 20 μm particles at varying flow rates to observe particle trajectories. The simulated results predict a shift in Dc at Re > 50, while the experimental results indicate a breakdown of typical DLD operation at Re > 70.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 3461-3467
Author(s):  
Weibin Liang ◽  
Robert H. Austin ◽  
James C. Sturm

Scaling DLD array devices to a single column of bumping obstacles to increase throughput per area and minimize device area.


Sign in / Sign up

Export Citation Format

Share Document