scholarly journals Prediction of specific cutting forces and maximum tool temperatures in orthogonal machining by Support Vector and Gaussian Process Regression Methods

2020 ◽  
Vol 48 ◽  
pp. 1000-1008
Author(s):  
Maryam Hashemitaheri ◽  
Sai Manish Reddy Mekarthy ◽  
Harish Cherukuri
2021 ◽  
Vol 11 (9) ◽  
pp. 4055
Author(s):  
Mahdi S. Alajmi ◽  
Abdullah M. Almeshal

Machining process data can be utilized to predict cutting force and optimize process parameters. Cutting force is an essential parameter that has a significant impact on the metal turning process. In this study, a cutting force prediction model for turning AISI 4340 alloy steel was developed using Gaussian process regression (GPR), support vector machines (SVM), and artificial neural network (ANN) methods. The GPR simulations demonstrated a reliable prediction of surface roughness for the dry turning method with R2 = 0.9843, MAPE = 5.12%, and RMSE = 1.86%. Performance comparisons between GPR, SVM, and ANN show that GPR is an effective method that can ensure high predictive accuracy of the cutting force in the turning of AISI 4340.


Author(s):  
Jitendra Khatti ◽  
◽  
Dr. Kamaldeep Singh Grover ◽  

The present research work is carried out to predict the geotechnical properties (consistency limits, OMC, and MDD) of soil using AI technologies, namely regression analysis (RA), support vector machine (SVM), Gaussian process regression (GPR), artificial neural networks (ANNs), and relevance vector machine (RVM). The models of machine learning (SVM, GPR), hybrid learning (RVM), and deep learning (ANNs) are constructed in MATLAB R2020a with different configurations. The models of RA are built using the Data Analysis Tool of Microsoft Excel 2019. The input parameters of AI models are gravel, sand, silt, and clay content. The correlation coefficient is calculated for pair of soil datasets. The correlation shows that sand, silt, and clay content play a vital role in predicting soil's liquid limit and plasticity index. The performance of constructed AI models is compared to determine the optimum performance models. The limited datasets of soil are used in this study. Therefore, artificial neural networks and relevance vector machines could not perform well. Based on the performance of AI models, the Gaussian process regression outperformed the RA, SVM, ANNs, and RVM AI technologies. Hence, the GPR AI approach can predict the geotechnical properties of soil by gravel, sand, silt, and clay content. The Monte-Carlo global sensitivity analysis is also performed, and it is observed that the prediction of geotechnical properties of soil is affected by sand and clay content


2019 ◽  
Vol 64 (6) ◽  
pp. 619-642 ◽  
Author(s):  
Lal Hussain ◽  
Sharjil Saeed ◽  
Adnan Idris ◽  
Imtiaz Ahmed Awan ◽  
Saeed Arif Shah ◽  
...  

Abstract Due to the excitability of neurons in the brain, a neurological disorder is produced known as epilepsy. The brain activity of patients suffering from epilepsy is monitored through electroencephalography (EEG). The multivariate nature of features from time domain, frequency domain, complexity and wavelet entropy based, and the statistical features were extracted from healthy and epileptic subjects using the Bonn University database and seizure and non-seizure intervals using the CHB MIT database. The robust machine learning regression methods based on regression, support vector regression (SVR), regression tree (RT), ensemble regression, Gaussian process regression (GPR) were employed for detecting and predicting epileptic seizures. Performance was measured in terms of root mean square error (RMSE), squared error, mean square error (MSE) and mean absolute error (MAE). Moreover, detailed optimization was performed using a RT to predict the selected features from each feature category. A deeper analysis was conducted on features and tree regression methods where optimal RMSE and MSE results were obtained. The best optimal performance was obtained using the ensemble boosted regression tree (BRT) and exponential GPR with an RMSE of 0.47, an MSE (0.22), an R Square (RS) (0.25) and an MAE (0.30) using the Bonn University database and support vector machine (SVM) fine Gaussian with RMSE (0.63634), RS (0.03), MSE (0.40493) and MAE (0.31744); squared exponential GPR and rational quadratic GPR with an RMSE of 0.63841, an RS (0.03), an MSE (0.40757) and an MAE (0.3472) was obtained using the CHB MIT database. A further deeper analysis for the prediction of selected features was performed on an RT to compute the optimal feasible point, observed and estimated function values, function evaluation time, objective function evaluation time and overall elapsed time.


2020 ◽  
Vol 38 (8) ◽  
pp. 840-850 ◽  
Author(s):  
Zeynep Ceylan

Accurate estimation of municipal solid waste (MSW) generation has become a crucial task in decision-making processes for the MSW planning and management systems. In this study, the Gaussian process regression (GPR) model tuned by Bayesian optimization was used to forecast the MSW generation of Turkey. The Bayesian optimization method, which can efficiently optimize the hyperparameters of kernel functions in the machine learning algorithms, was applied to reduce the computation redundancy and enhance the estimation performance of the models. Four socio-economic indicators such as population, gross domestic product per capita, inflation rate, and the unemployment rate were used as input variables. The performance of the Bayesian GPR (BGPR) model was compared with the multiple linear regression (MLR) and Bayesian support vector regression (BSVR) models. Different performance measures such as mean absolute deviation (MAD), root mean square error (RMSE), and coefficient of determination (R2) values were used to evaluate the performance of the models. The exponential-GPR model tuned by Bayesian optimization showed superior performance with minimum MAD (0.0182), RMSE (0.0203), and high R2 (0.9914) values in the training phase and minimum MAD (0.0342), RMSE (0.0463), and high R2 (0.9841) values in the testing phase. The results of this study can help decision-makers to be aware of social-economic factors associated with waste management and ensure optimal usage of their resources in future planning.


Sign in / Sign up

Export Citation Format

Share Document