scholarly journals In ovo co-administration of vitamins (A and D) and probiotic lactobacilli modulates immune responses in broiler chickens

2022 ◽  
pp. 101717
Author(s):  
Mohammadali Alizadeh ◽  
Jake Astill ◽  
Nadiyah Alqazlan ◽  
Bahram Shojadoost ◽  
Khaled Taha-Abdelaziz ◽  
...  
2018 ◽  
Vol 18 (1) ◽  
pp. 342-349 ◽  
Author(s):  
Majid Toghyani ◽  
Shohreh Tahmasebi ◽  
Mehrdad Modaresi ◽  
Sayed Sadra Ale Saheb Fosoul

2021 ◽  
Vol 7 ◽  
Author(s):  
Aleksandra Dunislawska ◽  
Agnieszka Herosimczyk ◽  
Adam Lepczynski ◽  
Petr Slama ◽  
Anna Slawinska ◽  
...  

Intestinal microbiota are a key factor in maintaining good health and production results in chickens. They play an important role in the stimulation of immune responses, as well as in metabolic processes and nutrient digestion. Bioactive substances such as prebiotics, probiotics, or a combination of the two (synbiotic) can effectively stimulate intestinal microbiota and therefore replace antibiotic growth promoters. Intestinal microbiota might be stimulated at the early stage of embryo development in ovo. The aim of the study was to analyze the expression of genes related to energy metabolism and immune response after the administration of inulin and a synbiotic, in which lactic acid bacteria were combined with inulin in the intestines and immune tissues of chicken broilers. The experiment was performed on male broiler chickens. Eggs were incubated for 21 days in a commercial hatchery. On day 12 of egg incubation, inulin as a prebiotic and inulin with Lactobacillus lactis subsp. cremoris as a synbiotic were delivered to the egg chamber. The control group was injected with physiological saline. On day 35 post-hatching, birds from each group were randomly selected and sacrificed. Tissues (spleen, cecal tonsils, and large intestine) were collected and intended for RNA isolation. The gene panel (ABCG8, HNF4A, ACOX2, APBB1IP, BRSK2, APOA1, and IRS2) was selected based on the microarray dataset and biological functions of genes related to the energy metabolism and immune responses. Isolated RNA was analyzed using the RT-qPCR method, and the relative gene expression was calculated. In our experiment, distinct effects of prebiotics and synbiotics following in ovo delivery were manifested in all analyzed tissues, with the lowest number of genes with altered expression shown in the large intestines of broilers. The results demonstrated that prebiotics or synbiotics provide a potent stimulation of gene expression in the spleen and cecal tonsils of broiler chickens. The overall number of gene expression levels and the magnitude of their changes in the spleen and cecal tonsils were higher in the group of synbiotic chickens compared to the prebiotic group.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohammadali Alizadeh ◽  
Jegarubee Bavananthasivam ◽  
Bahram Shojadoost ◽  
Jake Astill ◽  
Khaled Taha-Abdelaziz ◽  
...  

There is some evidence that lactobacilli can strengthen the immune system of chickens. This study evaluated the effects of in ovo and oral administration of a lactobacilli cocktail on cytokine gene expression, antibody-mediated immune responses, and spleen cellularity in chickens. Lactobacilli were administered either in ovo at embryonic day 18, orally at days 1, 7, 14, 21, and 28 post-hatches, or a combination of both in ovo and post-hatch inoculation. On day 5 and 10 post-hatch, spleen and bursa of Fabricius were collected for gene expression and cell composition analysis. On days 14 and 21 post-hatch, birds were immunized with sheep red blood cells (SRBC) and keyhole limpet hemocyanin (KLH), and sera were collected on days 7, 14, and 21 post-primary immunization. Birds that received lactobacilli (107 CFU) via in ovo followed by weekly oral administration showed a greater immune response by enhancing antibody responses, increasing the percentage of CD4+ and CD4+CD25+ T cells in the spleen and upregulating the expression of interferon (IFN)-α, IFN-β, interleukin (IL)-8, IL-13, and IL-18 in the spleen and expression of IFN-γ, IL-2, IL-6, IL-8, IL-12, and IL-18 in the bursa. These findings suggest that pre-and post-hatch administration of lactobacilli can modulate the immune response in newly hatched chickens.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 932
Author(s):  
Arkadiusz Matuszewski ◽  
Monika Łukasiewicz ◽  
Jan Niemiec ◽  
Maciej Kamaszewski ◽  
Sławomir Jaworski ◽  
...  

The use of intensive selection procedure in modern broiler chicken lines has led to the development of several skeletal disorders in broiler chickens. Therefore, current research is focused on methods to improve the bone quality in birds. In ovo technology, using nanoparticles with a high specificity to bones, is a potential approach. The present study aimed to evaluate the effect of in ovo inoculation (IOI) of calcium carbonate nanoparticles (CCN) on chicken embryo development, health status, bone characteristics, and on broiler production results and bone quality. After assessing in vitro cell viability, the IOI procedure was performed with an injection of 500 μg/mL CCN. The control group was not inoculated with CCN. Hatchability, weight, and selected bone and serum parameters were measured in embryos. Part of hatchlings were reared under standard conditions until 42 days, and production results, meat quality, and bone quality of broilers were determined. CCN did not show cytotoxicity to cells and chicken embryo and positively influenced bone parameters of the embryos and of broilers later (calcification) without negatively affecting the production results. Thus, the IOI of CCN could modify the molecular responses at the stage of embryogenesis, resulting in better mineralization, and could provide a sustained effect, thereby improving bone quality in adult birds.


2021 ◽  
pp. 1-7
Author(s):  
Hussin H. El-Fakhrany ◽  
Zenat A. Ibrahim ◽  
Elwy A. Ashour ◽  
Ali Osman ◽  
Mahmoud Alagawany

Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 624
Author(s):  
Xinfu Zeng ◽  
Qing Li ◽  
Caimei Yang ◽  
Yang Yu ◽  
Zixian Fu ◽  
...  

We aimed to investigate the effects of Clostridium butyricum-, Bacillus subtilis-, and Bacillus licheniformis-based potential probiotics on the growth performance, intestinal morphology, immune responses, and caecal short chain fatty acids (SCFAs) and microbial structure in broiler chickens. Three treatment groups containing a total of 1200 one-day-old AA broilers were included: birds fed with a basal diet only (Con), birds fed with added 1010 probiotics cfu/kg (ProL), and birds fed with added 1011 probiotics cfu/kg (ProH). The dietary probiotics significantly improved the final and average body weights and serum immunoglobulins A, M, and Y. The probiotics also enhanced the ileal morphology and improved the caecal acetate, butyrate, and propionate contents. Furthermore, 16S rRNA sequencing revealed that dietary compound probiotics modulated the caecal microflora composition as follows: (1) all birds shared 2794 observed taxonomic units; (2) treatment groups were well separated in the PCA and PCoA analysis; (3) the relative abundance of Parabacteroides, Ruminococcaceae_UCG-014, Barnesiella, Odoribacter, [Eubacterium_coprostanoligenes_group], [Ruminococcus]_torques_group, and Butyricimonas significantly varied between treatments. The compound probiotics improved the growth performance, serum immune responses, the ratio of ileal villus height to crypt depth, and major caecal SCFAs in broiler chickens. The dietary C. butyricum-, B. subtilis-, and B. licheniformis-based probiotics improved overall broiler health and would benefit the poultry industry.


10.1637/7087 ◽  
2004 ◽  
Vol 48 (1) ◽  
pp. 224-228 ◽  
Author(s):  
Z. Y. Guo ◽  
J. J. Giambrone ◽  
Z. Liu ◽  
T. V. Dormitorio ◽  
Hongzhuan Wu

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 476
Author(s):  
Marianna Szczypka ◽  
Agnieszka Suszko-Pawłowska ◽  
Maciej Kuczkowski ◽  
Michał Gorczykowski ◽  
Magdalena Lis ◽  
...  

The effects of in ovo-delivered prebiotics and synbiotics on the lymphocyte subsets of the lymphoid organs in non-immunized 7-day-old broiler chickens and in non-immunized, sheep red blood cells (SRBC)-immunized, and dextran (DEX)-immunized 21- and 35-day-old birds were studied. The substances were injected on the 12th day of egg incubation: Prebiotic1 group (Pre1) with a solution of inulin, Prebiotic2 group (Pre2) with a solution of Bi2tos (non-digestive transgalacto-oligosaccharides), Synbiotic1 group (Syn1) with inulin and Lactococcus lactis subsp. lactis IBB SL1, and Synbiotic2 group (Syn2) with Bi2tos and Lactococcus lactis subsp. cremoris IBB SC1. In 7-day-old chicks, a decrease in T splenocytes was noticed in all groups. The most pronounced effect in 21- and 35-day-old birds was an increase in TCRγδ+ cells in Syn1 and Syn2 groups. A decrease in bursal B cells was observed in DEX-immunized Pre1 group (21-day-old birds), and in the Syn1 group in non-immunized and SRBC-immunized 35-day-old birds. An increase in double-positive lymphocytes was observed in Pre1 (35-day-old birds) and Pre2 (immunized 21-day-old birds) groups. In Pre1 and Syn1 groups (21- and 35-day-old), an increase in B splenocytes and a decrease in T splenocytes were observed. We concluded that Syn1 was the most effective in the stimulation of the chicken immune system.


Sign in / Sign up

Export Citation Format

Share Document