scholarly journals Extracting organic matter on Mars: A comparison of methods involving subcritical water, surfactant solutions and organic solvents

2014 ◽  
Vol 99 ◽  
pp. 19-27 ◽  
Author(s):  
Duy Luong ◽  
Richard W. Court ◽  
Mark R. Sims ◽  
David C. Cullen ◽  
Mark A. Sephton
Weed Science ◽  
1976 ◽  
Vol 24 (6) ◽  
pp. 549-552 ◽  
Author(s):  
J. D. Gaynor ◽  
V. V. Volk

The effects of soil organic matter, clay, extractable Al, cation exchange capacity, and pH on the adsorption of picloram (4-amino-3,5,6-trichloropicolinic acid) from aqueous and surfactant solutions were investigated. Linear adsorption isotherms for the soils were obtained with the Freundlich equation. Of the five soil properties investigated, Freundlich K values correlated with extractable Al and clay content. Picloram adsorption from aqueous solutions and from the non-ionic and anionic surfactant solutions was greater on the soils at pH 5 than at pH 7. The anionic surfactant competed with picloram for adsorption sites on the soils at pH 5. Picloram adsorption from solutions containing 0.1 and 1% cationic surfactant was greater than that from aqeuous and anionic and nonionic surfactant solutions. Picloram adsorption from the 10% cationic surfactant solution was similar on soils with pH 5 and 7 and increased with decreased organic matter content.


2018 ◽  
Vol 13 (7) ◽  
pp. 1934578X1801300
Author(s):  
Anna V. Lekar ◽  
Sergey N. Borisenko ◽  
Elena V. Vetrova ◽  
Elena V. Maksimenko ◽  
Salima S. Khizrieva ◽  
...  

The aim of this work was to develop and study a fast “one-pot” procedure for the production of glycyrrhetinic acid (GLA) from the roots of licorice ( Glycyrrhiza glabra L.) using subcritical water (SBW). Technique requires no use expensive and toxic organic solvents. For the first time the new method was used for the production of glycyrrhetinic acid (aglycone of glycyrrhizic acid) by “one-pot” technique. HPLC was used to determine the quantitative compositions of the obtained products. It has been shown that variation of only one parameter of the process (temperature) allows alteration of composition of the products obtained by new “one-pot” technique. The “one-pot” procedure developed for the production of GLA in SBW is faster (12 folds) than conventional methods that use expensive and toxic organic solvents. The proposed procedure has the excellent potential for the future development of the fast and low cost technologies for the production of GLA and its derivatives in the pharmaceutical, food and cosmetic industries.


2021 ◽  
Vol 266 ◽  
pp. 07001
Author(s):  
Z.R. Nasyrova ◽  
G.P. Kayukova ◽  
A.E. Chemodanov ◽  
A.V. Vakhin

Studies on the conversion of organic matter of high-carbon Domanik (siliceous-clay carbonate) rock of the Romashkinskoye deposit with a mineral content Corg of 7.07% in sub- and supercritical water have been carried out. It was shown that subcritical water at a temperature of 320°С and 17.0 MPa leads to a partial decomposition of the kerogenic structure, increasing the yield of bitumen from 3.12 to 3.98%, and a more complete recovery of asphaltenes and heavy C22-C30 n-alkanes from the rock sample. Supercritical water at temperatures of 374 and 420°C and pressures above 24.4 MPa leads to intensive formation of hydrocarbon and inorganic gases in the processes of kerogen decomposition, destruction of aliphatic substituents from condensed heteroatomic structures of resins and asphaltenes, and the carbonate component of Domanik rock. Degradation of the organic matter of the Domanik rock is also accompanied by the formation of saturated hydrocarbons with an increased content of light C12-C21 n-alkanes, and carbonaceous substances, such as carbene-carboids. Changes in the structure of asphaltenes and their paramagnetic properties were determined by the EPR method. The influence of sub- and supercritical water on phase changes in the composition of rock minerals, as well as on the yield and composition of formed gases, was revealed.


2020 ◽  
Vol 8 (4) ◽  
pp. 244 ◽  
Author(s):  
Cristina Soares ◽  
Jaroslava Švarc-Gajić ◽  
Maria Teresa Oliva-Teles ◽  
Edgar Pinto ◽  
Nataša Nastić ◽  
...  

The present work aimed at studying Saccorhiza polyschides extracts obtained by subcritical water extraction as a potential source of essential macro and trace elements, aiming for its potential application as a biofertilizer. The mineral composition, as well as sulfate, chlorine and iodine, total organic matter, and total nitrogen content, were determined on the extracts obtained from seaweeds harvested during low tide at the northern Portuguese coast. The selected parameters are important for a biofertilizer. Among the macronutrients, the most abundant was K (15.7 ± 0.2 g/L), followed by Na (5.46 ± 0.11 g/L), S (1.52 ± 0.06 g/L), Ca (1.09 ± 0.11 g/L), and Mg (1.02 ± 0.08 g/L). Several important micronutrients (Zn, B, Cl, P, Mo, V, Se, and I) have also been found in the extracts. The total organic matter was 34.1 ± 0.3 g/L. The extracts present low levels of toxic compounds such as Ni, Cd, and Pb. Considering the composition of the obtained extracts, these can find application in the development of fertilization products. The composition of subcritical water extracts of S. polyschides suggests that they may have important characteristics as a biofertilizer and can be an option in biofortification experiments with essential nutrients. The method can be easily scaled up which makes it attractive for agricultural applications.


1968 ◽  
Vol 49 (5_ts) ◽  
pp. 733-738
Author(s):  
Robert K. Simon ◽  
Gary D. Christian ◽  
William C. Purdy

Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2258 ◽  
Author(s):  
Ninad Doctor ◽  
Yu Yang

Organic solvents are widely used in pharmaceutical and chemical industry for chromatographic separations. In recent years, subcritical water chromatography (SBWC) has shown ability in replacing hazardous organic solvents used in traditional high-performance liquid chromatography (HPLC). In this work, a pain killer—aspirin—and an antidiabetic drug—metformin HCl—were successfully separated on an XBridge C18 column using no organic solvents in the subcritical water chromatography mobile phase. Both traditional HPLC and subcritical water chromatography were used for comparison purposes. SBWC separation of metformin HCl and aspirin were achieved at 95 °C and 125 °C, respectively. The recovery for both active pharmaceutical ingredients (APIs) obtained by SBWC is 99% in comparing with the stated content of each drug. The relative standard deviation is less than 1% for SBWC assays developed in this work. This level of accuracy and precision achieved by SBWC is the same as that resulted by the traditional HPLC analysis.


Sign in / Sign up

Export Citation Format

Share Document