Clustered DNA damage concentrated in particle trajectories causes persistent large-scale rearrangements in chromatin architecture

2018 ◽  
Vol 129 (3) ◽  
pp. 600-610 ◽  
Author(s):  
Sara Timm ◽  
Yvonne Lorat ◽  
Burkhard Jakob ◽  
Gisela Taucher-Scholz ◽  
Claudia E. Rübe
2011 ◽  
Vol 76 (1) ◽  
pp. 147-156 ◽  
Author(s):  
M. M. Kutuzov ◽  
E. S. Ilina ◽  
M. V. Sukhanova ◽  
I. A. Pyshnaya ◽  
D. V. Pyshnyi ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e16187-e16187
Author(s):  
Yang Shao ◽  
Qiuxiang Ou ◽  
Zhenhao Fang ◽  
Rui Liu ◽  
Hua Bao ◽  
...  

e16187 Background: Bile tract cancers are genetically and clinically heterogenous with a poor prognosis. Identifying novel biomarkers for targeted therapy is required to improve the clinical outcome of bile tract cancer patients. Methods: Tumor tissue samples of 482 Chinese biliary tract cancer (BTC) patients were genetically profiled using targeted next generation sequencing. Tumor mutation burden (TMB) was calculated by counting all nonsynonymous mutations per megabase of coding sequences. The R package ReactomePA was used in pathway enrichment analysis. Genomic instability was characterized by an in-house developed NGS-based Homologous Recombination Deficiency (HRD) panel and a HRD score was an unweighted sum of loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale state transitions (LST) scores. Results: The BTC cohort consisted of 135 gallbladder cancer (GBC), 73 intrahepatic cholangiocarcinoma (iCCA), 18 distal cholangiocarcinoma (dCCA), 14 perihilar cholangiocarcinoma (pCCA), while the remaining 242 BTC patients of no specific subtype information. Most frequently mutated genes included TP53 (56%), KRAS (25%), ARID1A (17%), SMAD4 (11%), and CDKN2A (10%) . A preliminary pathway analysis revealed that mutations of DNA damage repair (DDR) pathway genes were enriched in the cohort ( p< 1e-10), accounting for over 70% of the patients, particularly in homologous recombination repair (HRR), Fanconi anemia (FA), mismatch repair (MMR), and base excision repair (BER) genes. More specifically, approximately 50% of the cohort carried at least one mutation of the HRR genes (43%) or MMR genes (14%). Patients with impaired MMR had increased microsatellite instability status (MSI) comparing to those with wildtype MMR (33% vs. 3.1%, p< 0.0001), and patients harboring HRR mutations demonstrated elevated genomic instability than those without such mutations (median HRD: 18 vs.14, p < 0.05), indicative of potential response to poly (ADP-ribose) polymerase (PARP) inhibitors and other DNA-damage agents. Furthermore, high TMB was found to be highly correlated with DDR gene alterations ( p =0.004). In addition, we observed higher mutation frequencies of BRCA1/2 genes (including somatic and germline) in GBCs in contrast to other BTC subtypes. Conclusions: We herein reported the genomic features of 482 Chinese BTC samples and highlighted the role of DDR pathways including HRR and MMR. These findings could be useful to establish treatment and diagnostic strategies for BTC patients based on genetic information.


2016 ◽  
Vol 114 (2) ◽  
pp. 406-411 ◽  
Author(s):  
Wei Feng ◽  
Christopher J. Hale ◽  
Ryan S. Over ◽  
Shawn J. Cokus ◽  
Steven E. Jacobsen ◽  
...  

Previously, we have shown that loss of the histone 3 lysine 27 (H3K27) monomethyltransferases ARABIDOPSIS TRITHORAX-RELATED 5 (ATXR5) and ATXR6 (ATXR6) results in the overreplication of heterochromatin. Here we show that the overreplication results in DNA damage and extensive chromocenter remodeling into unique structures we have named “overreplication-associated centers” (RACs). RACs have a highly ordered structure with an outer layer of condensed heterochromatin, an inner layer enriched in the histone variant H2AX, and a low-density core containing foci of phosphorylated H2AX (a marker of double-strand breaks) and the DNA-repair enzyme RAD51. atxr5,6 mutants are strongly affected by mutations in DNA repair, such as ATM and ATR. Because of its dense packaging and repetitive DNA sequence, heterochromatin is a challenging environment in which to repair DNA damage. Previous work in animals has shown that heterochromatic breaks are translocated out of the heterochromatic domain for repair. Our results show that atxr5,6 mutants use a variation on this strategy for repairing heterochromatic DNA damage. Rather than being moved to adjacent euchromatic regions, as in animals, heterochromatin undergoes large-scale remodeling to create a compartment with low chromatin density.


2010 ◽  
Vol 45 (2) ◽  
pp. 186-186
Author(s):  
Japan Atomic Energy Agency

2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S208-S208
Author(s):  
Samuel Beck ◽  
Junyeong Lee

Abstract Aging causes the global disorganization of nuclear chromatin architecture. In a normal young nucleus, silent heterochromatin is associated with the nuclear lamina layer underlying nuclear envelope, thus spatially separated from euchromatin at the nuclear center. Notably, aging causes the disruption of nuclear lamina and the decondensation of associated heterochromatin. However, it is not clearly understood how these changes of chromatin architectures contribute to age-related diseases. Through large-scale computational analyses, we present that CpG islands (CGIs) give important clues to answering this question. CGIs are DNA elements with high Cytosine-phosphate-Guanine dinucleotide frequencies. In human, about 60% of total genes contain CGIs at their promoters (CGI+ genes) and are broadly expressed throughout the body. The other 40% of genes that do not have CGIs (CGI- genes) exhibit tissue-restricted expression patterns. Our results demonstrate that, in normal young nuclei, only CGI- genes can reside within lamina-associated heterochromatin when transcriptionally inactive, while CGI+ genes associate with nuclear central euchromatin even when they are repressed. In parallel, we show that age-associated heterochromatin decondensation can specifically de-repress tissue-specific CGI- genes leading to their uncontrolled expressions. Our results further demonstrate that global misregulation of CGI- genes increases the noise in gene transcription that, in turn, causes the loss of cellular identities during aging. Taken together, our study establishes critical implication of CGI-mediated chromatin architecture in age-associated degenerative changes and loss of tissue homeostasis.


2020 ◽  
Vol 21 (11) ◽  
pp. 4127
Author(s):  
Xu Han ◽  
James Kapaldo ◽  
Yueying Liu ◽  
M. Sharon Stack ◽  
Elahe Alizadeh ◽  
...  

The effective clinical application of atmospheric pressure plasma jet (APPJ) treatments requires a well-founded methodology that can describe the interactions between the plasma jet and a treated sample and the temporal and spatial changes that result from the treatment. In this study, we developed a large-scale image analysis method to identify the cell-cycle stage and quantify damage to nuclear DNA in single cells. The method was then tested and used to examine spatio-temporal distributions of nuclear DNA damage in two cell lines from the same anatomic location, namely the oral cavity, after treatment with a nitrogen APPJ. One cell line was malignant, and the other, nonmalignant. The results showed that DNA damage in cancer cells was maximized at the plasma jet treatment region, where the APPJ directly contacted the sample, and declined radially outward. As incubation continued, DNA damage in cancer cells decreased slightly over the first 4 h before rapidly decreasing by approximately 60% at 8 h post-treatment. In nonmalignant cells, no damage was observed within 1 h after treatment, but damage was detected 2 h after treatment. Notably, the damage was 5-fold less than that detected in irradiated cancer cells. Moreover, examining damage with respect to the cell cycle showed that S phase cells were more susceptible to DNA damage than either G1 or G2 phase cells. The proposed methodology for large-scale image analysis is not limited to APPJ post-treatment applications and can be utilized to evaluate biological samples affected by any type of radiation, and, more so, the cell-cycle classification can be used on any cell type with any nuclear DNA staining.


2020 ◽  
Vol 48 (20) ◽  
pp. 11244-11258
Author(s):  
Gabriele A Fontana ◽  
Hailey L Gahlon

Abstract Deletions in mitochondrial DNA (mtDNA) are associated with diverse human pathologies including cancer, aging and mitochondrial disorders. Large-scale deletions span kilobases in length and the loss of these associated genes contributes to crippled oxidative phosphorylation and overall decline in mitochondrial fitness. There is not a united view for how mtDNA deletions are generated and the molecular mechanisms underlying this process are poorly understood. This review discusses the role of replication and repair in mtDNA deletion formation as well as nucleic acid motifs such as repeats, secondary structures, and DNA damage associated with deletion formation in the mitochondrial genome. We propose that while erroneous replication and repair can separately contribute to deletion formation, crosstalk between these pathways is also involved in generating deletions.


2003 ◽  
Vol 2 (2) ◽  
pp. 274-283 ◽  
Author(s):  
Denis Ostapenko ◽  
Mark J. Solomon

ABSTRACT CTDK-I phosphorylates the C-terminal domain (CTD) of the large subunit of yeast RNA polymerase II in a reaction that stimulates transcription elongation. Mutations in CTDK-I subunits—Ctk1p, Ctk2p, and Ctk3p—confer conditional phenotypes. In this study, we examined the role of CTDK-I in the DNA damage response. We found that mutation of individual CTDK-I subunits rendered yeast sensitive to hydroxyurea (HU) and UV irradiation. Treatment with DNA-damaging agents increased phosphorylation of Ser2 within the CTD repeats in wild-type but not in ctk1Δ mutant cells. Using microarray hybridization, we identified genes whose transcription following DNA damage is Ctk1p dependent, including several DNA repair and stress response genes. Following HU treatment, the level of Ser2-phosphorylated RNA polymerase II increased both globally and on the CTDK-I-regulated genes. The pleiotropic phenotypes of ctk mutants suggest that CTDK-I activity is essential during large-scale transcriptional repatterning under stress and unfavorable growth conditions.


2008 ◽  
Vol 52 (1) ◽  
pp. 443-444 ◽  
Author(s):  
H. Terato ◽  
H. Watari ◽  
Y. Shimazaki ◽  
R. Hirayama ◽  
Y. Furusawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document