Rapid Re-encroachment by Juniperus virginiana After a Single Restoration Treatment

2021 ◽  
Vol 78 ◽  
pp. 112-116
Author(s):  
Dillon T. Fogarty ◽  
Caitlin de Vries ◽  
Christine Bielski ◽  
Dirac Twidwell
Keyword(s):  
2012 ◽  
Vol 212 (6) ◽  
pp. 1324-1330 ◽  
Author(s):  
Pornnapa Kasemsiri ◽  
Salim Hiziroglu ◽  
Sarawut Rimdusit

2021 ◽  
Vol 13 (10) ◽  
pp. 1975
Author(s):  
Lin Wang ◽  
Yuzhen Zhou ◽  
Qiao Hu ◽  
Zhenghong Tang ◽  
Yufeng Ge ◽  
...  

Woody plant encroachment into grasslands ecosystems causes significantly ecological destruction and economic losses. Effective and efficient management largely benefits from accurate and timely detection of encroaching species at an early development stage. Recent advances in unmanned aircraft systems (UAS) enabled easier access to ultra-high spatial resolution images at a centimeter level, together with the latest machine learning based image segmentation algorithms, making it possible to detect small-sized individuals of target species at early development stage and identify them when mixed with other species. However, few studies have investigated the optimal practical spatial resolution of early encroaching species detection. Hence, we investigated the performance of four popular semantic segmentation algorithms (decision tree, DT; random forest, RF; AlexNet; and ResNet) on a multi-species forest classification case with UAS-collected RGB images in original and down-sampled coarser spatial resolutions. The objective of this study was to explore the optimal segmentation algorithm and spatial resolution for eastern redcedar (Juniperus virginiana, ERC) early detection and its classification within a multi-species forest context. To be specific, firstly, we implemented and compared the performance of the four semantic segmentation algorithms with images in the original spatial resolution (0.694 cm). The highest overall accuracy was 0.918 achieved by ResNet with a mean interaction over union at 85.0%. Secondly, we evaluated the performance of ResNet algorithm with images in down-sampled spatial resolutions (1 cm to 5 cm with 0.5 cm interval). When applied on the down-sampled images, ERC segmentation performance decreased with decreasing spatial resolution, especially for those images coarser than 3 cm spatial resolution. The UAS together with the state-of-the-art semantic segmentation algorithms provides a promising tool for early-stage detection and localization of ERC and the development of effective management strategies for mixed-species forest management.


Planta Medica ◽  
2018 ◽  
Vol 84 (09/10) ◽  
pp. 662-673 ◽  
Author(s):  
Ané Orchard ◽  
Alvaro Viljoen ◽  
Sandy van Vuuren

AbstractFoot odour (bromodosis) is an embarrassing and perplexing condition mostly caused by bacteria of the Brevibacterium species. Essential oils are a credible option as an affordable treatment of odour and contribute towards antimicrobial efficacy. Therefore, this study sets out to investigate the antimicrobial activity of essential oil combinations against odour-causing bacteria. The broth microdilution method was used to investigate the antimicrobial activity of 119 essential oil combinations, and the fractional inhibitory index was calculated to determine the interactive profile. Combinations that resulted in synergy in 1 : 1 ratios were further evaluated in different concentrations, and isobolograms were plotted to determine the influence of the ratio on overall activity. Numerous combinations could be identified as having synergistic interactions against the Brevibacterium spp. and no antagonism was observed. The combination of Juniperus virginiana (juniper) and Styrax benzoin (benzoin) demonstrated synergy against all three Brevibacterium spp. tested and J. virginiana was the essential oil responsible for the majority of the synergistic interactions. The results reported here confirm the promising potential of the majority of these oils and selected combinations in treating and controlling bromodosis.


1997 ◽  
Vol 75 (1) ◽  
pp. 77-85 ◽  
Author(s):  
David W. Martin ◽  
Donald R. Young

A field and laboratory study examined the hypothesis that the small-scale distribution pattern of Juniperus virginiana on barrier islands is related to salinity patterns and plant responses to salinity. Temporal (May – October) and spatial variability in ground water availability, ground water salinity, and total soil chlorides were quantified across a Virginia barrier island. Groundwater depth and salinity increased throughout the summer; microtopographic position and location on the island also affected soil salinities. Highest salinities occurred near the ocean side beach and bay side marsh, as well as in low lying swales that flood during extreme high tides or storms. Median rooting zone chloride level for J. virginiana was 54 μg/g. In contrast, laboratory germination and growth studies indicated that J. virginiana was significantly affected only at high salinity levels (1000 and 1400 μg/g), suggesting that salinity is not the only factor regulating small-scale distribution patterns. The broad tolerance to salinity may account for the abundance of J. virginiana in coastal environments. Key words: barrier island, eastern red cedar, Juniperus virginiana, salinity response, water relations.


1999 ◽  
Vol 823 (1-2) ◽  
pp. 169-176 ◽  
Author(s):  
Kenji Asakura ◽  
Toshiyuki Kanemasa ◽  
Kazuyuki Minagawa ◽  
Kiyomi Kagawa ◽  
Mitsuyoshi Ninomiya
Keyword(s):  

2010 ◽  
pp. 127-133
Author(s):  
Svetlana Trifunci ◽  
Dorina Ardelean

The isolation and quantitative determination of flavonoid compounds in fruit of Juniperus virginiana L. (Cupressaceae) are described. A method for the detection of those flavonoids was high performance liquid chromatography (HPLC). Rutin and kaempferol were determined in accordingly extracts and quercetin only in hydrolysated extracts.


Sign in / Sign up

Export Citation Format

Share Document