Towards low carbon cities: Spatio-temporal dynamics of urban form and carbon dioxide emissions

2020 ◽  
Vol 18 ◽  
pp. 100317
Author(s):  
Samereh Falahatkar ◽  
Fatemeh Rezaei
2012 ◽  
Vol 616-618 ◽  
pp. 1484-1489 ◽  
Author(s):  
Xu Shan ◽  
Hua Wang Shao

The coordination development of economy-energy-environment was discussed with traditional environmental loads model, combined with "decoupling" theory. Considering the possibilities of social and economic development, this paper set out three scenarios, and analyzed quantitatively the indexes, which affected carbon dioxide emissions, including population, per capita GDP, industrial structure and energy structure. Based on this, it forecasted carbon dioxide emissions in China in future. By comparing the prediction results, it held that policy scenario was the more realistic scenario, what’s more it can achieve emission reduction targets with the premise of meeting the social and economic development goals. At last, it put forward suggestions to implement successfully policy scenario, from energy structure, industrial structure, low-carbon technology and so on.


2021 ◽  
Vol 11 (5) ◽  
pp. 2009
Author(s):  
Valerii Havrysh ◽  
Antonina Kalinichenko ◽  
Anna Brzozowska ◽  
Jan Stebila

The depletion of fossil fuels and climate change concerns are drivers for the development and expansion of bioenergy. Promoting biomass is vital to move civilization toward a low-carbon economy. To meet European Union targets, it is required to increase the use of agricultural residues (including straw) for power generation. Using agricultural residues without accounting for their energy consumed and carbon dioxide emissions distorts the energy and environmental balance, and their analysis is the purpose of this study. In this paper, a life cycle analysis method is applied. The allocation of carbon dioxide emissions and energy inputs in the crop production by allocating between a product (grain) and a byproduct (straw) is modeled. Selected crop yield and the residue-to-crop ratio impact on the above indicators are investigated. We reveal that straw formation can consume between 30% and 70% of the total energy inputs and, therefore, emits relative carbon dioxide emissions. For cereal crops, this energy can be up to 40% of the lower heating value of straw. Energy and environmental indicators of a straw return-to-field technology and straw power generation systems are examined.


2022 ◽  
Vol 1 (15) ◽  
pp. 71-75
Author(s):  
Dmitriy Kononov

The strategy of low-carbon development of the economy and energy of Russia provides for the introduction of a fee (tax) for carbon dioxide emissions by power plants. This will seriously affect their prospective structure and lead to an increase in electricity prices. The expected neg-ative consequences for national and energy security are great. But serious and multilateral research is needed to properly assess these strategic threats


2015 ◽  
Vol 787 ◽  
pp. 142-146
Author(s):  
Siva Teja Chopperla ◽  
Rajeswari Jupalli ◽  
Deepak Kanraj ◽  
A. Bahurudeen ◽  
M.K. Haneefa ◽  
...  

The consumption of Portland cement for the production of concrete is rapidly increasing because of the remarkable growth in the construction worldwide. Cement production is an energy intensive process. The energy consumption by the cement industry is estimated to be about 5% of the total global industrial energy consumption. Manufacturing process of cement consumes enormous quantities of raw materials from limited natural resources at a high rate and leads to their depletion. Due to the dominant use of carbon intensive fuels such as coal, the cement industry is a major emitter of carbon dioxide and other air pollutants. The cement industry contributes about 6 % of global carbon dioxide emissions which is the primary source of global warming. In addition to carbon dioxide emissions, significant amount of nitrogen oxides, sulphur dioxide, carbon monoxide, hydrocarbons and volatile organic compounds are emitted during cement manufacturing and causes severe environmental issues. In this regard, effective control techniques for reduction in carbon dioxide emissions from modern cement industry and an efficient procedure to achieve sustainable cement manufacturing process are discussed in this paper.


2021 ◽  
pp. 9-16
Author(s):  
E. Maysyuk

Decrease in greenhouse gas emissions is a current trend in solving the climate change problems. The concept of low-carbon cities is extensively discussed nowadays. It aims to reduce greenhouse gas emissions through integrated mechanisms and measures, which comply with socio-economic development and city management. Since a considerable part of the population lives in cities, the utmost goal of the study is to analyze the situation with emissions of the main greenhouse gas, i.e., carbon dioxide, in the urban environment. The major sources of carbon dioxide emissions are stationary energy facilities of different capacities burning fuel. The paper considers the city of Irkutsk as an example of the populated area included in the study on low carbon cities under the auspices of the Social and Economic Commission for Asia and the Pacific of the UN - UNESCAP. The first stage of the studies involved assessing the current carbon dioxide emissions from energy facilities of the city through the calculation of carbon dioxide emissions from boiler houses and the city cogeneration plant for 1990. The findings revealed the potential of reducing carbon dioxide emissions from energy facilities in Irkutsk. The paper suggests the basic directions and measures to mitigate greenhouse gas emissions from the urban energy facilities.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Sivakiruthika Natchimuthu ◽  
Marcus B. Wallin ◽  
Leif Klemedtsson ◽  
David Bastviken

2020 ◽  
Author(s):  
Filippo Vingiani ◽  
Nicola Durighetto ◽  
Gianluca Botter ◽  
Marcus Klaus ◽  
Jakob Schelker

<p>Fluvial ecosystems have a huge potential to affect the global carbon budget. In particular, streams and rivers significantly contribute to carbon dioxide emissions. However, CO2 fluxes from streams to the atmosphere exhibit a marked spatial and temporal variability that is difficult to quantify. Spatio-temporal patterns of biogeochemical fluxes are the result of interconnected unsteady hydrological (e.g. discharge, stream’s length and area, air-water gas exchange velocities) and biochemical conditions. Local estimates of carbon dioxide fluxes from a water body require the simultaneous knowledge of gas exchange coefficients and carbon dioxide concentrations. Different methods (e.g. tracer gas addition, oxygen time series, eddy covariance technique, flux chambers) have been recently developed to obtain point or spatially integrated measures of carbon fluxes under different environmental conditions. Here, we present the results of a flume experiment conducted in the Lunzer Rinnen facility in Lunz am See (Austria). The contribution discusses the dependence of the air-water gas exchange velocities on a set of relevant physical flow properties (i.e. slope, water velocity, discharge). The experimental setup is representative of low slope/velocity streams (flume energy dissipation rate less than 0.01). Gas exchange velocities were evaluated interpreting CO2 observations derived from a standard and an ad-hoc designed flexible-foil CO2 chamber under different deployment modes - anchored and drifting. Our data confirms that higher slopes and flow velocity enhance air-water gas exchange velocities; hence, CO2 outgassing rates in rivers. Moreover, the flexible foil chamber developed for this experiment is shown to be a useful tool for the estimate of local CO2 outgassing rates as it reduces the turbulence induced by the standard chamber on the streamflow. Given the flexibility/simplicity of the floating chamber its use can improve the ability to quantify spatio-temporal patterns of CO2 outgassing in streams.</p>


Sign in / Sign up

Export Citation Format

Share Document