A review on exergy analysis of solar electricity production

2017 ◽  
Vol 74 ◽  
pp. 755-770 ◽  
Author(s):  
Fatih Bayrak ◽  
Nidal Abu-Hamdeh ◽  
Khaled A. Alnefaie ◽  
Hakan F. Öztop
2019 ◽  
Vol 210 ◽  
pp. 1261-1269 ◽  
Author(s):  
Aymeric Girard ◽  
Claudio Roberts ◽  
François Simon ◽  
Javier Ordoñez

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7620
Author(s):  
Haroon ur Rashid Khan ◽  
Usama Awan ◽  
Khalid Zaman ◽  
Abdelmohsen A. Nassani ◽  
Mohamed Haffar ◽  
...  

The global energy mix is shifting from fossil fuels to combinations of multiple energy storage and generation types. Hybrid energy system advancements provide opportunities for developing and deploying innovative green technology solutions that can further reduce emissions and achieve net-zero emissions by 2050. This study examined the impact of an increasing share of wind and solar electricity production on reducing carbon intensity by controlling coal and lignite domestic consumption and the production of refined oil products in a world aggregated data panel. Data covering the last three decades were used for the analysis by the ARDL bounds testing approach. The results showed that an increasing share of wind and solar electricity production would be helpful to decrease carbon intensity in the short and long term. On the other hand, a 1% increase in coal and domestic lignite consumption increased carbon intensity by 0.343% in the short run and 0.174% in the long run. The production of refined oil products decreases carbon intensity by 0.510% in the short run and 0.700% in the long run. However, refining oil products is associated with positive and negative environmental externalities. The positive aspect depends upon the removal of harmful pollutants and the production of cleaner-burning fuels, while the negative part is related to the operational side of refineries and processing plants that may release contaminants into the atmosphere, affecting global air and water quality. Hence, it is crucial to improve processing and refining capacity to produce better-refined oil products by using renewable fuels in energy production. It is proposed that these are the most cost-effective pathways to achieve industrial decarbonization.


2013 ◽  
Vol 94 (6) ◽  
pp. 903-914 ◽  
Author(s):  
Marion Schroedter-Homscheidt ◽  
Armel Oumbe ◽  
Angela Benedetti ◽  
Jean-Jacques Morcrette

The potential for transferring a larger share of our energy supply toward renewable energy is a widely discussed goal in society, economics, environment, and climate-related programs. For a larger share of electricity to come from fluctuating solar and wind energy-based electricity, production forecasts are required to ensure successful grid integration. Concentrating solar power holds the potential to make the fluctuating solar electricity a dispatchable resource by using both heat storage systems and solar production forecasts based on a reliable weather prediction. These solar technologies exploit the direct irradiance at the surface, which is a quantity very dependent on the aerosol extinction with values up to 100%. Results from present-day numerical weather forecasts are inadequate, as they generally use climatologies for dealing with aerosol extinction. Therefore, meteorological forecasts have to be extended by chemical weather forecasts. The paper aims at quantifying on a global scale the question of whether and where daily mean or hourly forecasts are required, or if persistence is sufficient in some regions. It assesses the performance of recently introduced NWP aerosol schemes by using the ECMWF/Monitoring Atmospheric Composition and Climate (MACC) forecast, which is a preparatory activity for the upcoming European Global Monitoring for Environment and Security (GMES) Atmosphere Service.


2020 ◽  
Vol 13 (6) ◽  
pp. 1235-1248 ◽  
Author(s):  
Mario Lamagna ◽  
Benedetto Nastasi ◽  
Daniele Groppi ◽  
Meysam Majidi Nezhad ◽  
Davide Astiaso Garcia

Abstract Hourly energy consumption profiles are of primary interest for measures to apply to the dynamics of the energy system. Indeed, during the planning phase, the required data availability and their quality is essential for a successful scenarios’ projection. As a matter of fact, the resolution of available data is not the requested one, especially in the field of their hourly distribution when the objective function is the production-demand matching for effective renewables integration. To fill this gap, there are several data analysis techniques but most of them require strong statistical skills and proper size of the original database. Referring to the built environment data, the monthly energy bills are the most common and easy to find source of data. This is why the authors in this paper propose, test and validate an expeditious mathematical method to extract the building energy demand on an hourly basis. A benchmark hourly profile is considered for a specific type of building, in this case an office one. The benchmark profile is used to normalize the consumption extracted from the 3 tariffs the bill is divided into, accounting for weekdays, Saturdays and Sundays. The calibration is carried out together with a sensitivity analysis of on-site solar electricity production. The method gives a predicted result with an average 25% MAPE and a 32% cvRMSE during one year of hourly profile reconstruction when compared with the measured data given by the Distributor System Operator (DSO).


Mechanika ◽  
2020 ◽  
Vol 26 (3) ◽  
pp. 242-251
Author(s):  
M. AMANI ◽  
A. SMAILI ◽  
A. GHENAIET

The aim of this study is the thermo-economic assessments of an integrated solar combined cycle (ISCC) system, in terms of thermal efficiency, electricity production and levelized electricity cost (LCOE). During the day light the power plant operates as an ISCC and operates as a conventional combined cycle (CC) during the night or cloudy days. In one hand the obtained results show that at the design point the solar electricity ratio may reach about 17 % and the global thermal efficiency 63 %, leading to lower fuel consumption and carbon emission. On the other hand, the economic assessment depicts that LCOE may reach 0.0222 $/kWh, which is about 28 % higher than that of (CC) power plants. Furthermore, by introducing the environmental effect LCOE becomes equal to 0.0272 $/kWh which is higher. Therefore, the annual solar contribution relatively to this ISCC installation site will allow about 18.45 million $ of fuel saving, avoiding emission of 0.89 million ton of CO2 over 30 years operation.


2020 ◽  
Author(s):  
Léna Beauzamy ◽  
Jérôme Delacotte ◽  
Benjamin Bailleul ◽  
Kenya Tanaka ◽  
Shuji Nakanishi ◽  
...  

ABSTRACTMicrobial solar cells that mainly rely on the use of photosynthesic organisms are a promising alternative to photovoltaics for solar electricity production. In that way, we propose a new approach involving electrochemistry and fluorescence techniques. The coupled set-up Electro-Pulse-Amplitude-Modulation (“e-PAM”) enables the simultaneous recording of the produced photocurrent and fluorescence signals from the photosynthetic chain. This methodology was validated with a suspension of green alga Chlamydomonas reinhardtii in interaction with an exogenous redox mediatior (2,6-dichlorobenzoquinone; DCBQ). The balance between photosynthetic chain events (PSII photochemical yield, quenching) and the extracted electricity can be monitored overtime. More particularly, the non photochemical quenching induced by DCBQ mirrors the photocurrent. This set-up thus helps to distinguish the electron harvesting from some side effects due to quinones in real time. It therefore paves the way for future analyses devoted to the choice of the experimental conditions (redox mediator, photosynthetic organisms…) to find the best electron extraction.


2021 ◽  
Vol 29 (1) ◽  
pp. 44-53
Author(s):  
Reihaneh Naderi ◽  
Mohsen Shafiei Nikabadi ◽  
Akbar Alem-Tabriz ◽  
Mir Saman Pishvaee

AbstractEnvironmental threats of coal usage in the electricity production combined with the consumption of renewable and non-renewable resources had led to worldwide energy challenges. The cost of coal mining and economical and environmentally sustainable usage of mined coal could be optimized by efficient management of coal supply chain. This paper provides a mathematical model for improving coal supply chain sustainability including the cost of exergy destruction (entropy). In the proposed method, exergy analysis is used to formulate the model considering not only economic costs but also destructed exergy cost, while genetic algorithm is applied to efficiently solve the proposed model. In order to validate the proposed methodology, some numerical examples of coal supply chains are presented and discussed to show the usability of the proposed exergetic coal supply chain model and claim its benefits over the existing models. According to the results, the proposed method provides 17.6% saving in the consumed exergy by accepting 2.7% more economic costs. The presented model can be used to improve the sustainability of coal supply chain for either designing new projects or upgrading existing processes.


Sign in / Sign up

Export Citation Format

Share Document