New strategy for detection of hydrogen peroxide based on bi-nucleophilic reaction

Author(s):  
Chenxin Mao ◽  
Yafei Tian ◽  
Shuoshuo Wang ◽  
Bei Wang ◽  
Xiang Liu
2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Dong Liu ◽  
Yang Liu ◽  
Haoqing Hou ◽  
Tianyan You

A novel sonochemical process, using hydrogen peroxide in a laboratory ultrasonic bath, was employed to pretreat the carbon nanofiber (CNF) for creating oxygen-rich groups on the surface of CNF. After the sonochemical process, the CNF showed good hydrophilicity and high electrochemical activity. Compared to normal pretreatment process, this sonochemical process is timesaving and effective for dispersion and functionalization of CNF. The resulting CNF showed high catalytic activity toward the oxidation of DA. A carbon paste electrode modified by CNF (CPE-CNF) was used to determine the dopamine (DA) in the presence of ascorbic acid (AA). The detection limit is 0.05 μM, with the linear range from 0.05 μM to 6.4 μM.


RSC Advances ◽  
2014 ◽  
Vol 4 (57) ◽  
pp. 30392-30397
Author(s):  
T. N. Lin ◽  
Y. L. Chang ◽  
G. W. Shu ◽  
C. T. Yuan ◽  
J. L. Shen ◽  
...  

Detection of hydrogen peroxide by using fluorescence resonance energy transfer from InGaN quantum wells to Au nanoclusters via optical waveguiding has been demonstrated. This technique provides a new strategy for the visual detection of H2O2 with large-area analysis.


RSC Advances ◽  
2016 ◽  
Vol 6 (105) ◽  
pp. 103311-103319 ◽  
Author(s):  
Nicola Gemo ◽  
Federica Menegazzo ◽  
Pierdomenico Biasi ◽  
Anjana Sarkar ◽  
Ajaikumar Samikannu ◽  
...  

Nitrogen doping is a new strategy to improve catalysts for H2O2 direct synthesis.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1802
Author(s):  
Runmei Li ◽  
Xuefan Gu ◽  
Xingtang Liang ◽  
Shi Hou ◽  
Daodao Hu

The difference in gold nanoparticle (AuNPs) aggregation caused by different mixing orders of AuNPs, 4-mercaptophenylboronic acid (4-MPBA), and hydrogen peroxide (H2O2) has been scarcely reported. We have found that the color change of a ((4-MPBA + AuNPs) + H2O2) mixture caused by H2O2 is more sensitive than that of a ((4-MPBA + H2O2) + AuNPs) mixture. For the former mixture, the color changes obviously with H2O2 concentrations in the range of 0~0.025%. However, for the latter mixture, the corresponding H2O2 concentration is in the range of 0~1.93%. The mechanisms on the color change originating from the aggregation of AuNPs occurring in the two mixtures were investigated in detail. For the ((4-MPBA + H2O2) + AuNPs) mixture, free 4-MPBA is oxidized by H2O2 to form bis(4-hydroxyphenyl) disulfide (BHPD) and peroxoboric acid. However, for the ((4-MPBA+AuNPs) + H2O2) mixture, immobilized 4-MPBA is oxidized by H2O2 to form 4-hydroxythiophenol (4-HTP) and boric acid. The decrease in charge on the surface of AuNPs caused by BHPD, which has alarger steric hindrance, is poorer than that caused by -4-HTP, and this is mainly responsible for the difference in the aggregation of AuNPs in the two mixtures. The formation of boric acid and peroxoboric acid in the reaction between 4-MPBA and H2O2 can alter the pH of the medium, and the effect of the pH change on the aggregation of AuNPs should not be ignored. These findings not only offer a new strategy in colorimetric assays to expand the detection range of hydrogen peroxide concentrations but also assist in deepening the understanding of the aggregation of citrate-capped AuNPs involved in 4-MPBA and H2O2, as well as in developing other probes.


2021 ◽  
Author(s):  
Sheng-Ying Chou ◽  
Hiroshi Masai ◽  
Masaya Otani ◽  
Gentaro Sakamoto ◽  
Yusuke Yamada ◽  
...  

Abstract π-Conjugated molecules have been utilized to functionalize inorganic surfaces to form organic–inorganic hybrid materials. However, the intrinsically strong π–π interaction results in undesirable aggregations on the inorganic surface, thereby disturbing the charge transfer through the organic–inorganic interface. In this study, a new strategy was developed using insulated π-conjugated molecules bearing a [1]rotaxane structure, where the π-conjugation was covered with covalently linked permethylated α-cyclodextrins. Aggregation-free immobilization was achieved on an inorganic surface by using insulated molecules to suppress intermolecular interaction. In the presence of these insulated molecules, the hybrid interface displayed excellent interfacial electrical properties. Moreover, the functionalized hybrid surface was utilized as an electrocatalyst to produce hydrogen peroxide using a Co(II)–chlorin complex, wherein the catalytic efficiency was improved dramatically by utilizing insulated molecules as bridging moieties at the interface. These results demonstrate that the insulation of π-conjugated molecules is a powerful strategy for modifying inorganic surfaces.


Author(s):  
George E. Childs ◽  
Joseph H. Miller

Biochemical and differential centrifugation studies have demonstrated that the oxidative enzymes of Acanthamoeba sp. are localized in mitochondria and peroxisomes (microbodies). Although hartmanellid amoebae have been the subject of several electron microscopic studies, peroxisomes have not been described from these organisms or other protozoa. Cytochemical tests employing diaminobenzidine-tetra HCl (DAB) and hydrogen peroxide were used for the ultrastructural localization of peroxidases of trophozoites of Hartmanella sp. (A-l, Culbertson), a pathogenic strain grown in axenic cultures of trypticase soy broth.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


Sign in / Sign up

Export Citation Format

Share Document