scholarly journals Corrosion Behavior of Eutectic Molten Salt solution on Stainless Steel 316L

2015 ◽  
Vol 195 ◽  
pp. 2699-2708 ◽  
Author(s):  
Fuzieah Subari ◽  
Hafizul Faiz Maksom ◽  
Aiman Zawawi
2017 ◽  
Vol 36 (3) ◽  
pp. 257-265
Author(s):  
Tao Wang ◽  
Divakar Mantha ◽  
Ramana G. Reddy

AbstractIn this article, the corrosion behavior of stainless steel 316L in a low melting point novel LiNO3-NaNO3-KNO3-NaNO2 eutectic salt mixture was investigated at 695 K which is considered as thermally stable temperature using electrochemical and isothermal dipping methods. The passive region in the anodic polarization curve indicates the formation of protective oxides layer on the sample surface. After isothermal dipping corrosion experiments, samples were analyzed using SEM and XRD to determine the topography, corrosion products, and scale growth mechanisms. It was found that after long-term immersion in the LiNO3-NaNO3-KNO3-NaNO2 molten salt, LiFeO2, LiFe5O8, Fe3O4, (Fe, Cr)3O4 and (Fe, Ni)3O4 oxides were formed. Among these corrosion products, LiFeO2 formed a dense and protective layer which prevents the SS 316L from severe corrosion.


2012 ◽  
Vol 15 (3) ◽  
pp. 112-122
Author(s):  
Ali H. Ataiwi ◽  
◽  
Abdul Khaliq F. Hamood ◽  
Rana A. Majed ◽  
◽  
...  

2021 ◽  
Vol 1885 (3) ◽  
pp. 032005
Author(s):  
Dandan Men ◽  
Jian Xiong ◽  
Wenyi Peng ◽  
Lingyun Bai

Author(s):  
T. Tajiri ◽  
Z. Zeng

Abstract The microstructure of arc sprayed stainless steel 316L coatings appears mainly in bright white matrix, deteriorated layers (grey), and black pores under optical microscopy. The black pores and the chromium-depleted areas in the deteriorated layers are known as the factors for decreasing the ability of protecting substrate under corrosive environments. Results of experiments in this paper suggests, in the condition of this study besides the factors mentioned above, Fe-Cr oxides should be another factor of dominating the corrosion resistance in the coatings. It also describes that the quantity and the distributions of such oxides are great influence on the corrosion behaviors. In this study, two kinds of coatings were used, one with thick deteriorated layers and another with thin deteriorated layers, which were sprayed on mild steel substrate by air atomization and nitrogen atomization respectively. Salt spray test and salt-water dip test were carried out to investigate corrosion behavior in macro and micro view. An effect of sealing treatment on the performance of the coatings was also examined. Results of metallographic examination and image processing analysis are well supported by a detailed investigation of corrosion behaviors of individual phases.


2017 ◽  
Vol 263 ◽  
pp. 120-124
Author(s):  
Andi Rustandi ◽  
Suganta Setiawan ◽  
Ihsan Fathurrahman

Austenitic stainless steel 316L has been widely used in marine environment which containing sodium chloride solution (NaCl). In order to provide matching properties with parent metal, filler metal SMA 316L is commonly produced with slightly over alloyed composition. This work investigated the corrosion behavior of base metal 316L and SMA 316L weld metal by using Electrochemical Impedance Spectroscopy (EIS) to evaluate the mechanism of corrosion behavior based on impedance magnitude measurement at room temperature (27°C ). Various concentrations of sodium chloride solution i.e 1%,2%,3.5%,4% ,and 5% NaCl were prepared. Optical Metallography was also conducted to compare microstructure of base and weld metal. By using Nyquist graphs and its related equivalent circuit parameters showed that impedance magnitude of weld metal was higher which compared to base metal at any NaCl concentration. Metallography examination revealed that weld metal 316L had dendritic austenitic with delta ferrite and 316L base metal had austenite with typical twin boundaries structure. Higher chromium and nickel content in weld metal 316L was the key variable that control passive film characteristic rather than its microstructure. The lowest impedance magnitude of both 316L and all-weld metal 316L at various concentration was at 3.5% NaCl. Dissolved oxygen at 3.5% NaCl reach maximum solubility which causes severe pitting corrosion.


2021 ◽  
Vol MA2021-01 (19) ◽  
pp. 2088-2088
Author(s):  
Satria Robi Trisnanto ◽  
Xianglong Wang ◽  
Mathieu Brochu ◽  
Sasha Omanovic

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Alvaro A. Rodriguez ◽  
Joseph H. Tylczak ◽  
Michael C. Gao ◽  
Paul D. Jablonski ◽  
Martin Detrois ◽  
...  

The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi2 and CoCrFeNi2Mo0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pitting corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi2Mo0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi2 and stainless steel 316L.


Sign in / Sign up

Export Citation Format

Share Document