Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato “Solanum lycopersicum (variety Rio Grande)”

2009 ◽  
Vol 120 (3) ◽  
pp. 367-372 ◽  
Author(s):  
Lobna Zribi ◽  
Gharbi Fatma ◽  
Rezgui Fatma ◽  
Rejeb Salwa ◽  
Nahdi Hassan ◽  
...  
2021 ◽  
Vol 35 (1) ◽  
pp. 283-290
Author(s):  
Özgür Çakır ◽  
Burcu Arıkan ◽  
Burcu Karpuz ◽  
Neslihan Turgut-Kara

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1193
Author(s):  
Muhammad Sohail Saddiq ◽  
Shahid Iqbal ◽  
Muhammad Bilal Hafeez ◽  
Amir M. H. Ibrahim ◽  
Ali Raza ◽  
...  

Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five spring and five winter wheat genotypes seedlings. We evaluated the salt stress on root and shoot growth attributes, i.e., root length (RL), shoot length (SL), the relative growth rate of root length (RGR-RL), and shoot length (RGR-SL). The ionic content of the leaves was also measured. Physiological traits were also assessed, including stomatal conductance (gs), chlorophyll content index (CCI), and light-adapted leaf chlorophyll fluorescence, i.e., the quantum yield of photosystem II (Fv′/Fm′) and instantaneous chlorophyll fluorescence (Ft). Physiological and growth performance under salt stress (0, 100, and 200 mol/L) were explored at the seedling stage. The analysis showed that spring wheat accumulated low Na+ and high K+ in leaf blades compared with winter wheat. Among the genotypes, Sakha 8, S-24, W4909, and W4910 performed better and had improved physiological attributes (gs, Fv′/Fm′, and Ft) and seedling growth traits (RL, SL, RGR-SL, and RGR-RL), which were strongly linked with proper Na+ and K+ discrimination in leaves and the CCI in leaves. The identified genotypes could represent valuable resources for genetic improvement programs to provide a greater understanding of plant tolerance to salt stress.


2018 ◽  
Vol 70 (3) ◽  
pp. 413-423 ◽  
Author(s):  
Mohamed Farissi ◽  
Mohammed Mouradi ◽  
Omar Farssi ◽  
Abdelaziz Bouizgaren ◽  
Cherki Ghoulam

Salinity is one of the most serious agricultural problems that adversely affects growth and productivity of pasture crops such as alfalfa. In this study, the effects of salinity on some ecophysiological and biochemical criteria associated with salt tolerance were assessed in two Moroccan alfalfa (Medicago sativa L.) populations, Taf 1 and Tata. The experiment was conducted in a hydro-aeroponic system containing nutrient solutions, with the addition of NaCl at concentrations of 100 and 200 mM. The salt stress was applied for a month. Several traits in relation to salt tolerance, such as plant dry biomass, relative water content, leaf gas exchange, chlorophyll fluorescence, nutrient uptake, lipid peroxidation and antioxidant enzymes, were analyzed at the end of the experiment. The membrane potential was measured in root cortex cells of plants grown with or without NaCl treatment during a week. The results indicated that under salt stress, plant growth and all of the studied physiological and biochemical traits were significantly decreased, except for malondialdehyde and H2O2 contents, which were found to be increased under salt stress. Depolarization of membrane root cortex cells with the increase in external NaCl concentration was noted, irrespective of the growth conditions. The Tata population was more tolerant to high salinity (200 mM NaCl) and its tolerance was associated with the ability of plants to maintain adequate levels of the studied parameters and their ability to overcome oxidative stress by the induction of antioxidant enzymes, such as guaiacol peroxidase, catalase and superoxide dismutase.


Author(s):  
C. Brindha, S. Vasantha, R. Arunkumar

 A few commercial sugarcane genotypes were subjected to salinity stress at various growth phases of sugarcane to ascertain the critical growth stage for salinity stress and to assess the response of the genotypes. All the data were recorded and analysed during maturity phase. The salt treatments drastically reduced SPAD chlorophyll, chlorophyll fluorescence, RWC, stalk height, weight and other yield parameters in a few genotypes during T2 (salt treatment given during formative phase) & T5 (salt treatment given throughout crop cycle) but a few genotypes which are tolerant towards salt stress gave better results comparing other genotypes. The ions like sodium, potassium and chloride were analysed in the juice which showed higher elevation in the genotype Co 97010. Among the genotypes, Co 85019 and Co 99004 recorded significantly prime compared to rest of the genotypes. Treatment throughout the growth phases (T5) followed by stress at formative phase (T2) were found to be critical for growth, physiological and yield responses in all the genotypes.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1481
Author(s):  
Juan Pablo Martínez ◽  
Raúl Fuentes ◽  
Karen Farías ◽  
Carolina Lizana ◽  
Juan Felipe Alfaro ◽  
...  

The effects of salt on the quality of fruits were investigated in order to compare the impact of salt on key fruit properties of the cultivated domesticated tomato species (Solanum lycopersicum) and its wild halophyte relative Solanum chilense. To this end, cherry tomato plants (S. lycopersicum var. cerasiforme) and from accession LA4107 (S. chilense) were maintained for 112 days in the absence or presence of NaCl (40 and 80 mM) in nutrient solution. Among others, salinity decreased fruit weight and increased total soluble solid (TSS) in S. lycopersicum but not in S. chilense. The fruit antioxidant capacity estimated by ferric reducing antioxidant power (FRAP) analysis was higher in S. chilense than in S. lycopersicum and increased in the former while it decreased in the latter in response to NaCl. Salinity increased the lycopene (LYC) content but decreased ß-carotene (b-CAR) concentration in the fruits of S. lycopersicum, while these compounds were not detected in the wild halophyte S. chilense. The oxidative status of salt-treated fruits was more tightly regulated in S. chilense than in S. lycopersicum. The two considered species, however, possess complementary properties and interspecific crosses may therefore be considered as a promising option for the improvement of salt-stress resistance in tomatoes.


2017 ◽  
Vol 8 ◽  
Author(s):  
Imène Hichri ◽  
Yordan Muhovski ◽  
Eva Žižková ◽  
Petre I. Dobrev ◽  
Emna Gharbi ◽  
...  

2018 ◽  
Vol 30 (5) ◽  
pp. 2929-2941 ◽  
Author(s):  
H. EL Arroussi ◽  
R. Benhima ◽  
A. Elbaouchi ◽  
B. Sijilmassi ◽  
N. EL Mernissi ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 272 ◽  
Author(s):  
Chiu-Yueh Lan ◽  
Kuan-Hung Lin ◽  
Wen-Dar Huang ◽  
Chang-Chang Chen

Wheat is a staple food worldwide, but its productivity is reduced by salt stress. In this study, the mitigative effects of 22 μM selenium (Se) on seedlings of the wheat (Triticum aestivum L.) cultivar Taichung SEL. 2 were investigated under different salt stress levels (0, 100, 200, 300, and 400 mM NaCl). Results of the antioxidative capacity showed that catalase (CAT) activity, non-enzymatic antioxidants (total phenols, total flavonoids, and anthocyanins), 1,1-Diphenyl-2-Picryl-Hydrazyl (DPPH) radical-scavenging activity, and the reducing power of Se-treated seedlings were enhanced under saline conditions. The more-stabilized chlorophyll fluorescence parameters (maximal quantum yield of photosystem II (Fv/Fm), minimal chlorophyll fluorescence (F0), effective quantum yield of photosystem II (ΦPSII), quantum yield of regulated energy dissipation of photosystem II (Y(NPQ)), and quantum yield of non-regulated energy dissipation of photosystem II (Y(NO)) and the less-extensive degradation of photosynthetic pigments (total chlorophyll and carotenoids) in Se-treated seedlings were also observed under salt stress. The elongation of shoots and roots of Se-treated seedling was also preserved under salt stress. Protection of these physiological traits in Se-treated seedlings might have contributed to stable growth observed under salt stress. The present study showed the protective effect of Se on the growth and physiological traits of wheat seedlings under salt stress.


Sign in / Sign up

Export Citation Format

Share Document