Changes in polyphenols, anthocyanins, and DPPH radical-scavenging activities in sweetpotato (Ipomoea batatas L.) during tuber growth

2021 ◽  
Vol 284 ◽  
pp. 110100
Author(s):  
Soya Nakagawa ◽  
Ryo Ohmura ◽  
Saki Toshima ◽  
Hyungjun Park ◽  
Yosuke Narasako ◽  
...  
2018 ◽  
Vol 44 (4) ◽  
pp. 515-520
Author(s):  
M Kazemi

Carum copticum L. comprises several relevant species for food, cosmetic, perfumery and pharmaceutical industries. GC/MS analysis of the enential oil of C. copticum revealed γ- terpinene as a major component of C. copticum, with its contribution of 33.85%. Essential oils (EOs) exhibited a significant antimicrobial activity against all tested microbial strains. In addition, the C. copticum oil demonstrated the highest DPPH radical scavenging activity. These results clearly show the antimicrobial and antioxidant effects of the plant essential oil.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Song Yu ◽  
Xuetian Zhu ◽  
Helin Yang ◽  
Lihe Yu ◽  
Yifei Zhang

AbstractSeed deterioration, coupled with a decrease in nutrients, is unavoidable following long-term storage, and these seeds are therefore used as livestock fodder. Here, we developed a simple, rapid and efficient method of producing high amounts of antioxidants from deteriorated seeds via melatonin-induced germination. Legume seeds were subjected to high humidity at 55 °C for 12–36 h to obtain aged seeds with a 40% germination rate and severely reduced antioxidant nutrition (total phenolics content, ferric reducing power and 1,1-diphenyl-2-picryhydrazyl (DPPH) radical scavenging capacity). Aged seeds were then treated with 0.1 mM melatonin, resulting in the production of sprouts with a higher total phenolics content (fivefold), greater ferric reducing power (sevenfold) and greater DPPH radical scavenging capacity (twofold) compared to the aged seeds. These findings suggest that melatonin treatment efficiently converted aged seed reserve residues into antioxidant nutrients, providing an alternative use for deteriorated seeds in food production.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1839
Author(s):  
Harlinda Kuspradini ◽  
Indah Wulandari ◽  
Agmi Sinta Putri ◽  
Sabeti Yulis Tiya ◽  
Irawan Wijaya Kusuma

Background: Litsea angulata is a plant species belonging to Lauraceae family that is distributed throughout Indonesia, Malaysia, and New Guinea. The seeds have been traditionally used by local people in Kalimantan, Indonesia for the treatment of boils; however, there is no information about the potency of its branch, bark and leaves yet. This study aimed to determine the antioxidant, antimicrobial activity as well as the phytochemical constituent of Litsea angulata branch, bark, and leaves. Methods: Extraction was performed by successive maceration method using n-hexane, ethyl acetate, and ethanol solvent. Antioxidant activity was evaluated by DPPH radical scavenging assay. The antimicrobial activity using the 96 well-plate microdilution broth method against Staphylococcus aureus and Streptococcus mutans. Results: Based on the phytochemical analysis, it showed that extract of L. angulata contains alkaloids, flavonoids, tannins, terpenoids, and coumarin. The results showed that all extracts of plant samples displayed the ability to inhibit DPPH free radical formation and all tested microorganisms. Conclusions: L. angulata contains secondary metabolites such as alkaloids, flavonoids, tannins, terpenoids, carotenoids, and coumarin. The antioxidant activity on different plant extracts was a range as very strong to weak capacity. All extracts in this study could inhibit the growth of S. aureus and S. mutans.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Nur Sumirah Mohd Dom ◽  
Nurshieren Yahaya ◽  
Zainah Adam ◽  
Nik Mohd Afizan Nik Abd. Rahman ◽  
Muhajir Hamid

The present study aimed to evaluate the potential of standardized methanolic extracts from seven Ficus deltoidea varieties in inhibiting the formation of AGEs, protein oxidation, and their antioxidant effects. The antiglycation activity was analyzed based on the inhibition of AGEs, fructosamine, and thiol groups level followed by the inhibition of protein carbonyl formation. The antioxidant activity (DPPH radical scavenging activity and reducing power assay) and total phenolic contents were evaluated. After 28 days of induction, all varieties of Ficus deltoidea extracts significantly restrained the formation of fluorescence AGEs by 4.55–5.14 fold. The extracts also reduced the fructosamine levels by 47.0–86.5%, increased the thiol group levels by 64.3–83.7%, and inhibited the formation of protein carbonyl by 1.36–1.76 fold. DPPH radical scavenging activity showed an IC50 value of 66.81–288.04 μg/ml and reducing power activity depicted at 0.02–0.24 μg/ml. The extent of phenolic compounds present in the extracts ranged from 70.90 to 299.78 mg·GAE/g. Apart from that, correlation studies between the activities were observed. This study revealed that seven varieties of Ficus deltoidea have the potential to inhibit AGEs formation and possess antioxidant activity that might be attributed to the presence of phenolic compounds.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Emeka E. Okoro ◽  
Omolaja R. Osoniyi ◽  
Almas Jabeen ◽  
Sidrah Shams ◽  
M. I. Choudhary ◽  
...  

Abstract Background Abrus precatorius possesses various therapeutic properties including anticancer potentials. This study evaluated the anti-proliferative activities of fractions of methanol root extract of A. precatorius on breast and cervical cancer cells and their immunomodulatory effect. Phytochemical screening was done by FTIR and GCMS. In vitro anti-proliferative effect was evaluated on human breast cancer (AU565) and cervical cancer (HeLa) cells and on murine fibroblast (NIH 3 T3) cells. Antioxidant activity was performed via DPPH radical scavenging assay. The immunomodulatory potential of fractions was evaluated by inhibition of phagocytes oxidative burst (ROS), Nitric oxide (NO) and proinflammatory cytokine TNF-α. Results A. precatorius fractions showed different chemical groups and were somewhat selective in antiproliferative activity against studied cancer cells. Ethyl acetate fraction showed the most significant antiproliferative activity with IC50 values of 18.10 μg/mL and 11.89 μg/mL against AU565 and HeLa cells respectively. Hexane fraction significantly (p < 0.05) inhibited HeLa cells (IC50 18.24 ± 0.16 μg/mL), whereas aqueous fraction showed mild inhibition (IC50 46.46 ± 0.14 μg/mL) on AU565 cell proliferation. All fractions showed no cytotoxicity against NIH-3 T3 murine fibroblast normal cells. All fractions showed potent and significant (p < 0.001) DPPH radical scavenging activity as well as suppressed phagocytic oxidative burst. Hexane (< 1 μg/mL), ethyl acetate (< 1 μg/mL), and butanol (5.74 μg/mL) fractions potently inhibited the cytokine TNF- α, hexane (< 1 μg/mL) and ethyl acetate (< 1 μg/mL) fractions also potently inhibited NO. Conclusions The antiproliferative activities and suppressive effect on the phagocytic oxidative burst, NO and proinflammatory cytokine might be due to the synergistic actions of bioactive compounds especially flavonoids present in the assayed fractions and therefore, suggest chemotherapeutic use of A. precatorius in cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document