Long-term effectiveness of microbe-assisted arsenic phytoremediation by Pteris vittata in field trials

2020 ◽  
Vol 740 ◽  
pp. 140137 ◽  
Author(s):  
Chongyang Yang ◽  
Ying-Ning Ho ◽  
Chihiro Inoue ◽  
Mei-Fang Chien
Keyword(s):  
Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 291
Author(s):  
Ramón Bienes ◽  
Maria Jose Marques ◽  
Blanca Sastre ◽  
Andrés García-Díaz ◽  
Iris Esparza ◽  
...  

Long-term field trials are essential for monitoring the effects of sustainable land management strategies for adaptation and mitigation to climate change. The influence of more than thirty years of different management is analyzed on extensive crops under three tillage systems, conventional tillage (CT), minimum tillage (MT), and no-tillage (NT), and with two crop rotations, monoculture winter-wheat (Triticum aestivum L.) and wheat-vetch (Triticum aestivum L.-Vicia sativa L.), widely present in the center of Spain. The soil under NT experienced the largest change in organic carbon (SOC) sequestration, macroaggregate stability, and bulk density. In the MT and NT treatments, SOC content was still increasing after 32 years, being 26.5 and 32.2 Mg ha−1, respectively, compared to 20.8 Mg ha−1 in CT. The SOC stratification (ratio of SOC at the topsoil/SOC at the layer underneath), an indicator of soil conservation, increased with decreasing tillage intensity (2.32, 1.36, and 1.01 for NT, MT, and CT respectively). Tillage intensity affected the majority of soil parameters, except the water stable aggregates, infiltration, and porosity. The NT treatment increased available water, but only in monocropping. More water was retained at the permanent wilting point in NT treatments, which can be a disadvantage in dry periods of these edaphoclimatic conditions.


GEOMATICA ◽  
2019 ◽  
Vol 73 (4) ◽  
pp. 93-106
Author(s):  
Colin Minielly ◽  
O. Clement Adebooye ◽  
P.B. Irenikatche Akponikpe ◽  
Durodoluwa J. Oyedele ◽  
Dirk de Boer ◽  
...  

Climate change and food security are complex global issues that require multidisciplinary approaches to resolve. A nexus exists between both issues, especially in developing countries, but little prior research has successfully bridged the divide. Existing resolutions to climate change and food security are expensive and resource demanding. Climate modelling is at the forefront of climate change literature and development planning, whereas agronomy research is leading food security plans. The Benin Republic and Nigeria have grown and developed in recent years but may not have all the tools required to implement and sustain long-term food security in the face of climate change. The objective of this paper is to describe the development and outputs of a new model that bridges climate change and food security. Data from the Intergovernmental Panel on Climate Change’s 5th Regional Assessment (IPCC AR5) were combined with a biodiversity database to develop the model to derive these outputs. The model was used to demonstrate what potential impacts climate change will have on the regional food security by incorporating agronomic data from four local underutilized indigenous vegetables (Amaranthus cruentus L., Solanum macrocarpon L., Telfairia occidentalis Hook f., and Ocimum gratissimum L.). The model shows that, by 2099, there is significant uncertainty within the optimal recommendations that originated from the MicroVeg project. This suggests that MicroVeg will not have long-term success for food security unless additional options (e.g., new field trials, shifts in vegetable grown) are considered, creating the need for need for more dissemination tools.


Author(s):  
Layne W. Rogers ◽  
Alyssa M. Koehler

Macrophomina phaseolina is a soilborne fungal pathogen in the family Botryosphaeriaceae. Microsclerotia of M. phaseolina were first observed at the base of overwintering stevia stems in North Carolina in spring 2016. Previous studies utilized destructive sampling methods to monitor M. phaseolina in stevia fields; however, these methods are not feasible for long-term monitoring of disease in a perennial system. In the current study, nondestructive root soil-core sampling was conducted during overwintering months, from October 2018 to January 2020, to monitor M. phaseolina root colonization in stevia in Rocky Mount, NC. Two-inch-diameter soil cores were collected through the root zone, and fresh weight of roots was recorded for each soil core. M. phaseolina recovery was evaluated by examining mycelial growth from roots plated onto potato dextrose agar. There was no significant effect of sample weight on M. phaseolina across all dates, but there was one date for which sample weight had a significant effect on recovery (P = 0.01; α = 0.05). For both recovery and sample weight, sampling date was a significant predictor (P = 1.68e-5 and P = 0.0389, respectively; α = 0.05). Weather and climate data revealed that dates with no M. phaseolina recovery had lowest mean air and soil temperatures and the greatest number of days below freezing in the month prior to sampling. In separate sampling years, October sampling dates had the highest recovery of M. phaseolina. Future field trials should determine if October samplings can predict survival and vigor of reemerging stevia plants.


Author(s):  
Fraser King ◽  
Jenny Been ◽  
Robert Worthingham ◽  
Grant Rubie

Three-layer FBE-polyolefin coatings offer the promise of good adhesive and corrosion properties from the FBE layer coupled with resistance to mechanical damage from the outer polyolefin layer. TransCanada Pipelines have been investigating the long-term behaviour of High Performance Composite Coating (HPCC) using a combination of laboratory testing and field trials. In the laboratory, panels of HPCC were subjected to standard CD disbondment testing following a two-stage degradation process. The degradation process, designed to simulate field exposure, involved impact damage followed by exposure to either a hot-water soak (60°C), or to microbiologically active soil with and without the application of CP. Following exposure, the duplicate panels were subject to 28-day CD disbondment tests to determine the extent of damage caused by the combination of impact and soil/hot water exposure. In the field, a section of HPCC coating was excavated and examined after 11 years service. In addition to visual inspection, the coating was examined in situ using a newly developed impedance technique EISPlus. This technique is a development of earlier EIS techniques and allows the dielectric properties of the coating to be determined in addition to the impedance of the solution-filled pores. EISPlus provides an improved sensitivity for high-impedance coatings, such as FBE, HPCC, and polyolefin tape. Furthermore, since it is a dry technique, rapid measurements can be made on coatings exposed to field conditions allowing the in-service performance to be determined. Results of both the laboratory testing and field EISPlus measurements are presented and the long-term performance of the coating discussed.


Author(s):  
Katherine East ◽  
Inga Zasada ◽  
R. Paul Schreiner ◽  
Michelle Marie Moyer

Vineyard replanting in Washington state can be negatively impacted by the plant-parasitic nematode Meloidogyne hapla. Chemically-focused nematode management programs do not offer long-term suppression, however, this may be achieved through the adoption of cultural approaches such as rootstocks and irrigation. Nematode-resistant rootstocks are used extensively in other regions, but many have not been tested against M. hapla. Vineyards in eastern Washington are irrigated, so manipulating available soil water may also impact nematode development. In 2017, two field trials were established in eastern Washington to evaluate the effects of: 1) late-summer water limitation on M. hapla population development, and 2) host status of 1103 Paulsen, 3309 Couderc and Matador rootstocks for M. hapla. The efficacy of these cultural management approaches was evaluated under three initial M. hapla densities (0, 50, and 250 M. hapla J2 per 250 g soil) in both trials. Reducing irrigation to manage M. hapla infestation of grape roots was ineffective and may cause harm to the vines by inducing too much water stress. Conversely, rootstocks effectively reduced population densities of M. hapla. Overall, rootstocks show the most promise as a cultural tool to manage M. hapla during the establishment phase in Washington vineyards.


2000 ◽  
Vol 134 (3) ◽  
pp. 237-244 ◽  
Author(s):  
U. BOSTRÖM ◽  
M. HANSSON ◽  
H. FOGELFORS

The influence of herbicides at reduced rates and repeated stubble-cultivation on weeds and crop yields was estimated in five field trials with spring-sown cereals situated in the south of Sweden during the autumn of 1989 until the spring of 1997. Stubble-cultivation was accomplished during 1989–1996, while herbicides were applied at 0, 1/8, 1/4 or 1/2 of full dose during 1990–1996.In the spring of 1997, i.e. after 7 years without herbicide application, seedling densities 3 weeks after weed emergence were 68–340/m2 at three sites and 535–610/m2 at two sites when averaged over tillage treatments.Averaged over herbicide doses, stubble-cultivation reduced the plant density of annual broad- leaved weeds by 6–32% at three sites and increased the density by 25% at one site. At the remaining site, the density was not significantly influenced. Stubble-cultivation reduced the populations of two perennial and seven annual weed species, while one species was stimulated and nine species showed null, or inconsistent, responses. In the spring of 1997, i.e. one year after the last herbicide application, the densities of weed seedlings in 1/8, 1/4 and 1/2-doses were 34, 46 and 56% lower, respectively, than in the untreated controls.Stubble-cultivation increased crop yields at four sites by 200 kg/ha as a mean over herbicide doses. At these four sites, averaged over 1993–1995, herbicides increased yields in plots that were not stubble-cultivated by 7, 8 and 10% in the 1/8, 1/4 and 1/2 of a full dose, respectively, relative to the untreated control. In 1996, herbicides increased yields at only two sites.It is concluded that a fruitful way for weed management with a low input of agrochemicals is to combine the use of herbicides at reduced rates with repeated stubble-cultivation.


2020 ◽  
Author(s):  
Nikolai Svoboda ◽  
Xenia Specka ◽  
Carsten Hoffmann ◽  
Uwe Heinrich

<p>The German research initiative BonaRes (“Soil as a sustainable resource for the bioeconomy”, financed by the Federal Ministry of Education and Research, BMBF) was launched in 2015 with a duration of 9 years and perpetuation envisaged. BonaRes includes 10 collaborative soil research projects and, additionally, the BonaRes Centre.</p><p>Within the BonaRes Data Centre (important infrastructure in the planned NFDI4Agri), diverse research data with mostly agricultural and soil background are collected from BonaRes collaborative projects and external scientists.  After a possible embargo expires, all data are made available in a standardized form for free reuse via the BonaRes Repository. Once the administrative and technical infrastructure has been established, the Data Centre provides services for scientists in all terms of data management. The focus here is on the publication of research data (e.g. long-term experiments, field trials, model results) to ensure availability and citeability and thus foster scientific reuse. Available data can be accessed via the BonaRes Repository. For instance: https://doi.org/10.20387/BonaRes-BSVY-R418.</p><p>Due to the high diversity of agricultural data provided via our repository, we have developed individually tailored strategies to make them citable for 1.) finalized data, 2.) regularly updating and 3.) data collections with related tables. The challenge is that the author's rights (license CC-BY) must be preserved and yet a user-friendly citation of even large amounts of data must be ensured. We will present our BonaRes DOI concept by means of use cases and will be looking forward to discuss it with the professional community.</p>


Sign in / Sign up

Export Citation Format

Share Document