The relationship between particulate matter retention capacity and leaf surface micromorphology of ten tree species in Hangzhou, China

2021 ◽  
Vol 771 ◽  
pp. 144812
Author(s):  
Xiaolu Li ◽  
Tianran Zhang ◽  
Fengbin Sun ◽  
Ximing Song ◽  
Yinke Zhang ◽  
...  
2020 ◽  
Vol 40 (1) ◽  
Author(s):  
王琴 WANG Qin ◽  
冯晶红 FENG Jinghong ◽  
黄奕 HUANG Yi ◽  
王鹏程 WANG Pengcheng ◽  
谢梦婷 XIE Mengting ◽  
...  

Phytotaxa ◽  
2021 ◽  
Vol 524 (4) ◽  
pp. 261-282
Author(s):  
ESHETU FENTAW ◽  
KELDA F.V.A. ELLIOTT ◽  
SEBSEBE DEMISSEW ◽  
DAVID CUTLER ◽  
OLWEN M. GRACE

The confident identification to species rank of fragmentary and sterile plant material is often challenged by the absence of diagnostic characters, which are present in intact specimens, reproductive parts, and plants in habitat. Here, we consider leaf surface micromorphology for the identification of the genus Aloe in the Horn of Africa region. Primary and secondary sculpturing of the leaf epidermis and stomata were characterised from SEM micrographs of 35 taxa representing 31 species of Aloe (Asphodelaceae subfam. Alooideae). Detailed comparison revealed that leaf surface characters are conserved between species and within-species variation is modest. Closely related taxa in the Aloe adigratana—A. camperi—A. sinana species complex could be distinguished using leaf surface micromorphology alone. These characters also guide species delimitation; in the species complex including A. schoelleri and A. steudneri, a narrow circumscription is supported, whereas with A. ankoberensis and A. pulcherrima, a wider circumscription merits consideration. The observed trait combinations are characteristic of plants in xeric environments, with the most notable feature being stomata that are most deeply sunken in species in more arid habitats. Our findings support the use of comparative study of micromorphological leaf surface characters for species identification and taxonomy in the genus Aloe.


Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 681 ◽  
Author(s):  
Weikang Zhang ◽  
Zhi Zhang ◽  
Huan Meng ◽  
Tong Zhang

Particulate matter (PM), including PM10 and PM2.5, has a major impact on air quality and public health. It has been shown that trees can capture PM and improve air quality. In this study, we used two-way ANOVA to investigate the significance of micro-morphological leaf surface characteristics of green trees in capturing PM at different parks in Beijing. The results show that leaf structure significantly impacts the ability of plants to capture PM. Pinus tabuliformis Carr. and Pinus bungeana Zucc. were mainly impacted by the density of stomata, waxy cuticle, and epidermis, while the major contributor to PM retention in other test trees, including Acer truncatum Bunge, Salix matsudana Koid., Populus tomentosa Carr. and Ginkgo biloba Linn. was leaf roughness. There were significant variations in leaf-droplet contact angle (representative of leaf wettability) and the ability of trees to capture PM (p < 0.05): the bigger the contact angle, the less able the plant was to capture particulate matter.


2001 ◽  
Vol 152 (5) ◽  
pp. 169-176 ◽  
Author(s):  
Monika Frehner

The article shows that knowledge of the site of a particular forest stand, together with research results and experience, can provide information that is important for the cultivation of mountain forests, including knowledge of the composition of the tree species and the structure and growth capacity of natural forest. Furthermore, certain sites can, thus, be characterized by factors that influence restocking, such as snow mould,lush ground vegetation or low temperature. The guidelines«minimale Pflegemassnahmen» – «Minimal tending of protection forests» (WASSER und FREHNER, 1996) are based on this principle. For individual sites, warnings about natural dangers such as rock fall or statements concerning nature conservation can be made (e.g., the occurrence of tree species, suitability as a biotope for Capercaille). In conclusion, two research projects on the relationship between site and natural dangers will be presented.


2018 ◽  
Vol 24 (3) ◽  
pp. 341-358 ◽  
Author(s):  
Xiaotong Ji ◽  
Yingying Zhang ◽  
Guangke Li ◽  
Nan Sang

Recently, numerous studies have found that particulate matter (PM) exposure is correlated with increased hospitalization and mortality from heart failure (HF). In addition to problems with circulation, HF patients often display high expression of cytokines in the failing heart. Thus, as a recurring heart problem, HF is thought to be a disorder characterized in part by the inflammatory response. In this review, we intend to discuss the relationship between PM exposure and HF that is based on inflammatory mechanism and to provide a comprehensive, updated evaluation of the related studies. Epidemiological studies on PM-induced heart diseases are focused on high concentrations of PM, high pollutant load exposure in winter, or susceptible groups with heart diseases, etc. Furthermore, it appears that the relationship between fine or ultrafine PM and HF is stronger than that between HF and coarse PM. However, fewer studies paid attention to PM components. As for experimental studies, it is worth noting that coarse PM may indirectly promote the inflammatory response in the heart through systematic circulation of cytokines produced primarily in the lungs, while ultrafine PM and its components can enter circulation and further induce inflammation directly in the heart. In terms of PM exposure and enhanced inflammation during the pathogenesis of HF, this article reviews the following mechanisms: hemodynamics, oxidative stress, Toll-like receptors (TLRs) and epigenetic regulation. However, many problems are still unsolved, and future work will be needed to clarify the complex biologic mechanisms and to identify the specific components of PM responsible for adverse effects on heart health.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Lixin Chen ◽  
Chenming Liu ◽  
Lu Zhang ◽  
Rui Zou ◽  
Zhiqiang Zhang

Sign in / Sign up

Export Citation Format

Share Document