Effect of wheat straw pretreated with liquid fraction of digestate from different substrates on anaerobic digestion performance and microbial community characteristics

Author(s):  
Yufang Wei ◽  
Yanyan Lan ◽  
Xiujin Li ◽  
Minghan Gao ◽  
Shuai Yuan ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Mads Borgbjerg Jensen ◽  
Nadieh de Jonge ◽  
Maja Duus Dolriis ◽  
Caroline Kragelund ◽  
Christian Holst Fischer ◽  
...  

The enzymatic hydrolysis of lignocellulosic polymers is generally considered the rate-limiting step to methane production in anaerobic digestion of lignocellulosic biomass. The present study aimed to investigate how the hydrolytic microbial communities of three different types of anaerobic digesters adapted to lignocellulose-rich wheat straw in continuous stirred tank reactors operated for 134 days. Cellulase and xylanase activities were monitored weekly using fluorescently-labeled model substrates and the enzymatic profiles were correlated with changes in microbial community compositions based on 16S rRNA gene amplicon sequencing to identify key species involved in lignocellulose degradation. The enzymatic activity profiles and microbial community changes revealed reactor-specific adaption of phylogenetically different hydrolytic communities. The enzymatic activities correlated significantly with changes in specific taxonomic groups, including representatives of Ruminiclostridium, Caldicoprobacter, Ruminofilibacter, Ruminococcaceae, Treponema, and Clostridia order MBA03, all of which have been linked to cellulolytic and xylanolytic activity in the literature. By identifying microorganisms with similar development as the cellulase and xylanase activities, the proposed correlation method constitutes a promising approach for deciphering essential cellulolytic and xylanolytic microbial groups for anaerobic digestion of lignocellulosic biomass.


Resources ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 118
Author(s):  
Jose D. Marin-Batista ◽  
Angel F. Mohedano ◽  
Angeles de la Rubia

This study assessed the breakdown of lignocellulosic biomass (LB) with the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]) as a pretreatment to increase the methane yield. The pretreatment was conducted for wheat straw (WS), barley straw (BS), and grape stem (GS) at 120 °C for 120 min, using several LB to [Emim][Ac] ratios (1:1, 1:3, and 1:5 w/w). Pretreatment significantly disrupted the lignocellulose matrix of each biomass into soluble sugars. GS showed the highest sugar yield, which was followed by WS, while BS was slightly hydrolyzed (175.3 ± 2.3, 158.2 ± 5.2, and 51.1 ± 3.1 mg glucose g–1 biomass, respectively). Likewise, the pretreatment significantly reduced the cellulose crystallinity index (CrI) of the resulting solid fractions of GS and WS by 15% and 9%, respectively, but slightly affected the CrI of BS (5%). Thus, BMP tests were only carried out for raw and hydrothermally and [Emim][Ac] (1:5) pretreated GS and WS. The untreated GS and WS showed similar methane yields to those achieved for the solid fraction obtained after pretreatment with an LB to [Emim][Ac] ratio of 1:5 (219 ± 10 and 368 ± 1 mL CH4 g–1 VS, respectively). The methane production of the solid plus liquid fraction obtained after IL pretreatment increased by 1.61- and 1.34-fold compared to the raw GS and WS, respectively.


Sign in / Sign up

Export Citation Format

Share Document