Association between air pollution and outpatient visits for allergic rhinitis: Effect modification by ambient temperature and relative humidity

Author(s):  
Rongshan Wu ◽  
Qun Guo ◽  
Jingpu Fan ◽  
Changsheng Guo ◽  
Gang Wang ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jianhui Gao ◽  
Mengxue Lu ◽  
Yinzhen Sun ◽  
Jingyao Wang ◽  
Zhen An ◽  
...  

Abstract Background The effect of ambient temperature on allergic rhinitis (AR) remains unclear. Accordingly, this study aimed to explore the relationship between ambient temperature and the risk of AR outpatients in Xinxiang, China. Method Daily data of outpatients for AR, meteorological conditions, and ambient air pollution in Xinxiang, China were collected from 2015 to 2018. The lag-exposure-response relationship between daily mean temperature and the number of hospital outpatient visits for AR was analyzed by distributed lag non-linear model (DLNM). Humidity, long-time trends, day of the week, public holidays, and air pollutants including sulfur dioxide (SO2), and nitrogen dioxide (NO2) were controlled as covariates simultaneously. Results A total of 14,965 AR outpatient records were collected. The relationship between ambient temperature and AR outpatients was generally M-shaped. There was a higher risk of AR outpatient when the temperature was 1.6–9.3 °C, at a lag of 0–7 days. Additionally, the positive association became significant when the temperature rose to 23.5–28.5 °C, at lag 0–3 days. The effects were strongest at the 25th (7 °C) percentile, at lag of 0–7 days (RR: 1.32, 95% confidence intervals (CI): 1.05–1.67), and at the 75th (25 °C) percentile at a lag of 0–3 days (RR: 1.15, 95% CI: 1.02–1.29), respectively. Furthermore, men were more sensitive to temperature changes than women, and the younger groups appeared to be more influenced. Conclusions Both mild cold and mild hot temperatures may significantly increase the risk of AR outpatients in Xinxiang, China. These findings could have important public health implications for the occurrence and prevention of AR.


2011 ◽  
Vol 409 (13) ◽  
pp. 2486-2492 ◽  
Author(s):  
Fengying Zhang ◽  
Wuyi Wang ◽  
Jinmei Lv ◽  
Thomas Krafft ◽  
Jin Xu

2018 ◽  
Author(s):  
Mingming Zheng ◽  
Shaofei Kong ◽  
Jianguo Bao ◽  
Ke Xu ◽  
Shurui Zheng ◽  
...  

Abstract. Aerosol acidity affects the chemical transformation of aerosols and subsequent haze formation. High resolution (1-h) observation of water-soluble inorganic ions in fine particles, gaseous pollutants, and meteorological parameters was conducted from September 2015 to August 2016 at Wuhan, a megacity of Central China with high relative humidity and ambient temperature, compared with north Chinese cities. By adopting thermodynamic model ISOROPPIA-II, the aerosol acidity for different time scales, pollution episodes, and air mass directions was calculated. Aerosols in Wuhan were moderate acidic, with pH averaged as 3.30 ± 0.49. The aerosol acidity was higher in July (pH as 2.64 ± 0.31), September (pH as 2.75 ± 0.30) and August (pH as 2.79 ± 0.29), and lower in January (pH as 3.77 ± 0.28) and March (pH as 3.70 ± 0.16). It decreased with the air pollution increasing, with the pH values of 3.07 ± 0.45, 3.63 ± 0.27 and 3.84 ± 0.22 for clean, transition and polluted episodes, respectively. The air masses in Wuhan transported from North China exhibited higher aerosol acidity, with pH averaged as 3.17–3.22. The unique environmental and meteorological conditions (high humidity, annual averaged RH as 0.74 ± 0.13) lead to excess ammonium (on average of 6.06 ± 4.51 μg m−3) and abundant aerosol water content (AWC, on average of 71.0 ± 82.8 μg m−3) in Wuhan, which can explain the lower PM2.5 acidity in Wuhan than other megacities of China. At lower AWC level (less than ~ 15 μg m−3), the particle pH showed a decreasing trend with AWC increased. When the AWC continuous increased from ~ 15 to ~ 380 μg m−3, there was an obvious increase of particle pH. Then no significant growth of pH was found when AWC was higher than ~ 380 μg m−3. With atmospheric RH increasing, the aerosol pH exhibited decreasing trend firstly and then increased, with the turning point RH as about 0.48. There was a logarithmic growth of aerosol pH with total NHx (NH3 + NH4+) increasing. From the fitted logarithmic curve, the aerosol pH of Wuhan was at the range of pH rapid growth stage with NHx increasing, indicating that the control of ammonia emission in Wuhan could be an effective way to reduce the aerosol pH and further mitigate air pollution. This paper firstly obtained the aerosol acidity properties at a megacity under abundant ammonium and high humidity with high time-resolution, which is an important supplementary for the current aerosol acidity research around the world.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ting Yu ◽  
Leilei Zhou ◽  
Jian Xu ◽  
Haidong Kan ◽  
Renjie Chen ◽  
...  

2020 ◽  
Vol 27 (19) ◽  
pp. 23565-23574 ◽  
Author(s):  
Jingyao Wang ◽  
Mengxue Lu ◽  
Zhen An ◽  
Jing Jiang ◽  
Juan Li ◽  
...  

Author(s):  
Surichai Bilheem ◽  
Thitiworn Choosong ◽  
Hutcha Sriplung ◽  
Wirat Eungpoonsawat ◽  
Chanon Kongkamol ◽  
...  

Objective: To investigate the demographic characteristics, seasonal variations, effects associated with air pollution, and geographic morbidity of asthma in Songkhla.Material and Methods: This research conducted a time series analysis of secondary data from 1 January, 2013 to 31 December, 2017. The distributed lag non-linear model was employed to analyze associations between air pollutants and daily asthma outpatient visits, and the Bayesian hierarchical modelling was used to map asthma morbidity spatiotemporally.Results: A total of 250,127 asthma diagnoses corresponding to 36,761 patients were found in the medical records. Most asthma outpatients were female (61.1%); males (1-5 years) constituted the majority of individuals during the first peak, while females (40-50 years) predominated the second peak. The trend analysis revealed a seasonal variation in the number of asthma outpatient visits; the highest rates were during the June-December period. The regression coefficient analysis revealed carbon monoxide (CO), nitrogen dioxide (NO2 ), relative humidity, and visibility to have the most significant positive effect on asthma, while the cos (wind direction) had the highest negative effect/impact. Significant associations were found between outpatient gender and age and CO, NO2 , sulfur dioxide, ozone, and particulate matter less than 10 micron. The Hat Yai and Central districts of Songkhla province were identified as morbidity hotspots.Conclusion: The number of asthma-related outpatient visits increased during the rainy season. Asthma affected primarily young boys and middle-aged women in this province, and they constitute the most sensitive group to air pollutants such as CO and NO2 and meteorological conditions like relative humidity and visibility. The highest morbidity rates were found in urbanized habitats.


2012 ◽  
Vol 2 (1) ◽  
pp. 14-20
Author(s):  
Yuwana Yuwana

Experiment on catfish drying employing ‘Teko Bersayap’ solar dryer was conducted. The result of the experiment indicated that the dryer was able to increase ambient temperature up to 44% and decrease ambient relative humidity up to 103%. Fish drying process followed equations : KAu = 74,94 e-0,03t for unsplitted fish and KAb = 79,25 e-0,09t for splitted fish, where KAu = moisture content of unsplitted fish (%), KAb = moisture content of splitted fish (%), t = drying time. Drying of unsplitted fish finished in 43.995 hours while drying of split fish completed in 15.29 hours. Splitting the fish increased 2,877 times drying rate.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Shuai Hao ◽  
Fang Yuan ◽  
Pai Pang ◽  
Bo Yang ◽  
Xuejun Jiang ◽  
...  

Abstract Background Few studies have explored the modifications by family stress and male gender in the relationship between early exposure to traffic-related air pollution (TRAP) and allergic rhinitis (AR) risk in preschool children. Methods We conducted a case-control study of 388 children aged 2–4 years in Shenyang, China. These children AR were diagnosed by clinicians. By using measured concentrations from monitoring stations, we estimated the exposures of particulate matter less than 10 μm in diameter (PM10), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and sulfur dioxide (SO2) in preschool children aged 2–4 years. After adjusted potential confounding factors, we used logistic regression model to evaluate the odds ratio (OR) and 95% confidence interval (CI) for childhood AR with exposure to different air pollutants according to the increasing of the interquartile range (IQR) in the exposure level. Results The prevalence of AR in children aged 2–4 years (6.4%) was related to early TRAP exposure. With an IQR (20 μg/m3) increase in PM10 levels, an adjusted OR was significantly elevated by 1.70 (95% CI, 1.19 to 2.66). Also, with an IQR (18 μg/m3) increase in NO2, an elevated adjusted OR was 1.85 (95% CI, 1.52 to 3.18). Among children with family stress and boys, PM10 and NO2 were positively related to AR symptoms. No significant association was found among children without family stress and girls. Conclusions Family stress and male gender may increase the risk of AR in preschool children with early exposure to PM10 and NO2.


Sign in / Sign up

Export Citation Format

Share Document