Conduction type evolution during eutectoid decomposition of Mn-added α-FeSi alloy

2005 ◽  
Vol 53 (6) ◽  
pp. 707-711 ◽  
Author(s):  
J JIANG ◽  
K MATSUGI ◽  
G SASAKI ◽  
O YANAGISAWA
Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1122
Author(s):  
Irina Varvara Balkan ◽  
Iulian Riposan

Electrically melted and over-heated (>1500 °C) grey cast iron at less than 0.04%S, as commonly used, solidifies large amounts of carbides and/or undercooled graphite, especially in thin wall castings; this is necessary to achieve a stronger inoculation. The efficiency of Ce-bearing FeSi alloy is tested for lower ladle addition rates (0.15 and 0.25 wt.%), compared to the base and conventional inoculated iron (Ba,Ca-bearing FeSi alloy). The present work explores chill and associated structures in hypoeutectic grey iron (3.6–3.8%CE, 0.02%S, (%Mn) × (%S) = 0.013–0.016, Alres < 0.002%), in wedge castings W1, W2 and W3 (ASTM A 367, furan resin sand mould), at a lower cooling modulus (1.1–3.5 mm) that is typically used to control the quality of thin wall iron castings. Relatively clear and total chill well correlated with the standard thermal (cooling curve) analysis parameters and structural characteristics in wedge castings, at different wall thickness, displayed as the carbides/graphite ratio and presence of undercooled graphite morphologies. The difference in effects of the two inoculants addition is seen as the ability to decrease the amount of carbides and undercooled graphite, with Ce-bearing FeSi alloy outperforming the conventional inoculant, especially as the wall thickness decreased. It appears that Ce-bearing FeSi alloy could be a solution for low sulphur, electric melt, thin wall iron castings production.


1995 ◽  
Vol 32 (5) ◽  
pp. 719-724 ◽  
Author(s):  
A.V. Dobromyslov ◽  
N.I. Taluts ◽  
N.V. Kazantseva

2013 ◽  
Vol 553 ◽  
pp. 208-211 ◽  
Author(s):  
Chung-Cheng Huang ◽  
Yow-Jon Lin ◽  
Cheng-Yu Chuang ◽  
Chia-Jyi Liu ◽  
Yao-Wei Yang

2004 ◽  
Vol 842 ◽  
Author(s):  
Seiji Miura ◽  
Kenji Ohkubo ◽  
Tetsuo Mohri

ABSTRACTThe authors have reported in the previous study that the sluggish decomposition of Nb3Si phase is effectively accelerated by Zr addition [1]. This is obvious at lower temperature range than the nose temperature of the TTT curve. In the present study a eutectic alloy containing 1.5 % of Zr was investigated. The crystallographic orientation relationships among phases, such as eutectic Nb and product phases formed by eutectoid decomposition of Nb3Si (eutectoid Nb and Nb5Si3phases) in the Zr-containing sample which was heat treated at 1300°C were investigated by FESEM/EBSD for further understanding of the decomposition process in alloy with a different microstructure.


2004 ◽  
Vol 10 (4) ◽  
pp. 470-480 ◽  
Author(s):  
B.P. Bewlay ◽  
S.D. Sitzman ◽  
L.N. Brewer ◽  
M.R. Jackson

Nb–silicide in situ composites have great potential for high-temperature turbine applications. Nb–silicide composites consist of a ductile Nb-based solid solution together with high-strength silicides, such as Nb5Si3and Nb3Si. With the appropriate addition of alloying elements, such as Ti, Hf, Cr, and Al, it is possible to achieve a promising balance of room-temperature fracture toughness, high-temperature creep performance, and oxidation resistance. In Nb–silicide composites generated from metal-rich binary Nb-Si alloys, Nb3Si is unstable and experiences eutectoid decomposition to Nb and Nb5Si3. At high Ti concentrations, Nb3Si is stabilized to room temperature, and the eutectoid decomposition is suppressed. However, the effect of both Ti and Hf additions in quaternary alloys has not been investigated previously. The present article describes the discovery of a low-temperature eutectoid phase transformation during which (Nb)3Si decomposes into (Nb) and (Nb)5Si3, where the (Nb)5Si3possesses the hP16 crystal structure, as opposed to the tI32 crystal structure observed in binary Nb5Si3. The Ti and Hf concentrations were adjusted over the ranges of 21 to 33 (at.%) and 7.5 to 33 (at.%) to understand the effect of bulk composition on the phases present and the eutectoid phase transformation.


2012 ◽  
Vol 46 (4) ◽  
pp. 491-495 ◽  
Author(s):  
V. M. Svetlichnyi ◽  
E. L. Aleksandrova ◽  
A. R. Tameev ◽  
L. A. Miagkova ◽  
N. V. Matyushina

Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 228
Author(s):  
Yuhua Xu ◽  
Zhenghou Zhu ◽  
Hui Zhao ◽  
Jia Zhou

In this paper, a single phase ε-Fe(Si)3N powder was successfully synthesized through the salt bath nitriding reaction method. The flaky FeSi alloy powder was used as the iron source, and non-toxic CO(NH2)2 was used as the nitrogen source. The nitridation mechanism, the preparation technology, the soft magnetic properties, and the magnetization temperature dependence of the powder were studied. The research result showed that ε-Fe(Si)3N alloy powders were synthesized in a high temperature nitrification system after the surface of flaky FeSi alloy powders were activated by a high-energy ball mill. The optimum nitriding process was nitridation for 1 h at 550 °C. The ε-Fe(Si)3N powder had good thermal stability at less than 478.8 °C. It was shown that ε-Fe(Si)3N powder has good soft magnetic properties, and the saturation magnetization of the powder was up to 139 emu/g. The saturation magnetization of ε-Fe(Si)3N powder remains basically constant in the temperature range of 300–400 K. In the temperature range of 400–600 K, the saturation magnetization decreases slightly with the increase of temperature, indicating that the magnetic ε-Fe(Si)3N powder has good magnetization temperature dependence.


2019 ◽  
Vol 43 (6) ◽  
pp. 120-124 ◽  
Author(s):  
Y. Takamura ◽  
Y. Stutler ◽  
E. Matsushita ◽  
K. Shinohara ◽  
T. Suzuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document