Integrated energy performance of an innovative translucent photoluminescent building envelope for lighting energy storage

2021 ◽  
pp. 103234
Author(s):  
Chiara Chiatti ◽  
Federica Rosso ◽  
Claudia Fabiani ◽  
Anna Laura Pisello
2019 ◽  
Vol 111 ◽  
pp. 03052 ◽  
Author(s):  
Mohammed Khalaf ◽  
Touraj Ashrafian ◽  
Cem Demirci

The energy conversations methods and techniques take a significant role in the energy performance of the buildings. Façade and shading systems are in continuous development, and recent studies are showing the importance of implementation of such systems to reduce energy consumption and enhance the effectiveness of the building performance. School buildings are mostly being used during daytime, hence, require active use of sunlight. A measure that is taken on a school building envelope can prevent overheating and overcooling and reduce the heating and cooling energy consumption but at the same time can increase the lighting energy consumption vice versa. Thus, it is necessary to optimise the energy required for climatisation of a building with lighting energy demand. The main aim of the paper is to provide analysis for façade and shading systems applied to a school building and study the effectiveness of it on energy consumption and conservation. The case study for this paper is a typical building project designed to be located in Istanbul, Turkey and has a traditional façade system which is clear double layer windows without any shading devices. The analyses of the energy efficiency of these systems will be presented. The different glazing types and shading systems alternatives will show the most efficient one to be used as some optimised alternatives for the systems. Findings indicate that proper glazing and shading systems can reduce the needed energy for heating and lightening and thus total energy consumption of a school building significantly.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1181 ◽  
Author(s):  
Bo Rang Park ◽  
Jongin Hong ◽  
Eun Ji Choi ◽  
Young Jae Choi ◽  
Choonyeob Lee ◽  
...  

The present study sets out to review the thermal and optical properties of electrochromic windows (ECWs) through an analysis of the improvement in the energy performance of a building resulting from their application. The performance analysis was based on the change in the room temperature according to the solar transmittance and the orientation of the ECWs, the energy consumptions of the building’s heating/cooling systems, and that of the building’s lighting according to the visible light transmittance (VLT). To achieve this, the Quick Energy Simulation Tool (eQUEST), a building energy interpretation program, was used. The solar heat gain coefficient (SHGC) of the ECWs was found to be significantly reduced. This had the effect of lowering the room temperature in summer, such that the effect on the summer cooling energy consumption was also remarkable. However, with a reduction in the VLT, the lighting energy consumption increased. The net result of the changes in the heating/cooling and lighting energy consumptions was a reduction of about 11,207 kWh/yr (8.89%). The ECWs were found to realize a greater reduction in a building’s energy consumption than was possible with windows glazed with low-E coated glass.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


2020 ◽  
Vol 10 (13) ◽  
pp. 4489
Author(s):  
Zakaria Che Muda ◽  
Payam Shafigh ◽  
Norhayati Binti Mahyuddin ◽  
Samad M.E. Sepasgozar ◽  
Salmia Beddu ◽  
...  

The increasing need for eco-friendly green building and creative passive design technology in response to climatic change and global warming issues will continue. However, the need to preserve and sustain the natural environment is also crucial. A building envelope plays a pivotal role in areas where the greatest heat and energy loss often occur. Investment for the passive design aspect of building envelopes is essential to address CO 2 emission. This research aims to explore the suitability of using integral-monolithic structural insulation fibre-reinforced lightweight aggregate concrete (LWAC) without additional insulation as a building envelope material in a high-rise residential building in the different climatic zones of the world. Polypropylene and steel fibres in different dosages were used in a structural grade expanded clay lightweight aggregate concrete. Physical and thermal properties of fibre reinforced structural LWAC, normal weight concrete (NWC) and bricks were measured in the lab. The Autodesk@Revit-GBS simulation program was implemented to simulate the energy consumption of a 29-storey residential building with shear wall structural system using the proposed fibre-reinforced LWAC materials. Results showed that energy savings between 3.2% and 14.8% were incurred in buildings using the fibre-reinforced LWAC across various climatic regions as compared with traditional NWC and sand-cement brick and clay brick walls. In conclusion, fibre-reinforced LWAC in hot-humid tropical and temperate Mediterranean climates meet the certified Green Building Index (GBI) requirements of less than 150 kW∙h∙m−2. However, in extreme climatic conditions of sub-arctic and hot semi-arid desert climates, a thicker wall or additional insulation is required to meet the certified green building requirements. Hence, the energy-saving measure is influenced largely by the use of fibre-reinforced LWAC as a building envelope material rather than because of building orientation.


2019 ◽  
Vol 13 (2) ◽  
pp. 129-133
Author(s):  
Gennadiy Farenyuk

The paper presents the basic methodical principles for the time analysis of the variations of envelope structures’ thermal insulation properties and for the substantiation of the thermal reliability criterion, which should allow the analysis of the actual parameters of heat losses during the operation of buildings. In the paper, the state of the envelope structures thermal failure, the concept of building thermal envelope thermal reliability and the principles of its rating are defined. The physical meaning and basic criterion of the envelope structure thermal reliability are formulated. The application of the thermal reliability criterion allows determining the probable variations in the thermal insulation properties during the building operation and, accordingly, the changes of the building energy performance over time.


2021 ◽  
Vol 13 (8) ◽  
pp. 4175
Author(s):  
Islam Boukhelkhal ◽  
Fatiha Bourbia

The building envelope is the barrier between the interior and exterior environments. It has many important functions, including protecting the interior space from the climatic variations through its envelope materials and design elements, as well as reduction of energy consumption and improving indoor thermal comfort. Furthermore, exterior building sidings, in addition to their aesthetic appearance, can have useful textures for reducing solar gains and providing good thermal insulation performance. This research examined and evaluated the effect of external siding texture and geometry on energy performance. For this objective, a field in situ testing and investigation of surface temperature was carried out on four samples (test boxes) with different exterior textures and different orientations, under the climate zone of Constantine–Algeria during the summer period. The results indicated significant dependability between the exterior texture geometry, the percentage of shadow projected, and external surface temperature. The second part of the research involved a similar approach, exploring the effect of three types of particles with the same appearance but with different thermal characteristics. It was concluded that the natural plant aggregates “palm particles” had the best performance, which contributed to a significant reduction of external surface temperature reaching 4.3 °C, which meant decreasing the energy consumption.


Sign in / Sign up

Export Citation Format

Share Document