Polypropylene membrane surface modification by RAFT grafting polymerization and TiO2 photocatalysts immobilization for phenol decomposition in a photocatalytic membrane reactor

2011 ◽  
Vol 83 ◽  
pp. 157-165 ◽  
Author(s):  
Song Yang ◽  
Jia-Shan Gu ◽  
Hai-Yin Yu ◽  
Jin Zhou ◽  
Shi-Feng Li ◽  
...  
2013 ◽  
Vol 634-638 ◽  
pp. 353-356
Author(s):  
Chao Lin Miao ◽  
Hui Wang

Surface modification of microporous polypropylene membrane was performed by grafting polymerization of acrylamide.The morphological and microstructure changes of the membrane surface were confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy. The results indicate that the pore size of the grafted membrane was reduced.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bing Hu ◽  
Jin Zhou ◽  
Xiu-Min Wu

Decoloring methyl orange (MeOr) under sunlight was conducted in a photocatalytic membrane reactor (PMR). Zinc oxide nanoparticles (ZnO NPs) were suspended in the solution or immobilized on the membrane. The membrane was modified by grafting 2-hydroxyethyl methacrylate (HEMA) to enhance the adsorption of ZnO NPs on the hydrophobic membrane surface and improve the membrane permeability. The results show that the water fluxes through the modified membranes are higher than that through the unmodified membrane. After introducing ZnO NPs to the membrane, the water fluxes still rise with the immobilization degree of ZnO NPs. For the PMR with ZnO NPs in suspension, the photocatalytic decoloration percent (PDP) was over 98.2% after 40 min under sunlight. For the PMR with ZnO NPs immobilized on the membrane, the max of PDP was 74.3% after 6 h under sunlight, and maintained at 72% after repeated uses for five times. These results demonstrate that photocatalytic membrane reactor (PMR) based on ZnO NPs and polypropylene macroporous membrane(PPMM) could be applied in decoloring dyes.


2018 ◽  
Vol 77 (11) ◽  
pp. 2642-2656 ◽  
Author(s):  
C. Nirmala Rani ◽  
S. Karthikeyan

Abstract In this study, a slurry photocatalytic membrane reactor (PMR) was developed and evaluated for the degradation of aqueous phenanthrene (PHE). During continuous process with a hydraulic retention time (HRT) of 140 min, the maximum PHE degradation and total organic carbon (TOC) removal efficiencies were found to be 97% and 79%, respectively. The reuse and recovery potential of TiO2 was studied with continuous recycling. The major intermediates during photodegradation of PHE were found to be phenanthrenequinone, phenanthenol and fluorine. This study also includes an investigation of membrane fouling caused by hydrophilic nano TiO2. The cake layer observed on the membrane surface was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive spectroscopy (EDS). In addition, the effect of operating parameters such as pH and permeate flux on membrane fouling were also investigated. Low permeate flux and alkaline conditions reduced membrane fouling.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 401
Author(s):  
Noresah Said ◽  
Ying Siew Khoo ◽  
Woei Jye Lau ◽  
Mehmet Gürsoy ◽  
Mustafa Karaman ◽  
...  

In this work, several ultrafiltration (UF) membranes with enhanced antifouling properties were fabricated using a rapid and green surface modification method that was based on the plasma-enhanced chemical vapor deposition (PECVD). Two types of hydrophilic monomers—acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) were, respectively, deposited on the surface of a commercial UF membrane and the effects of plasma deposition time (i.e., 15 s, 30 s, 60 s, and 90 s) on the surface properties of the membrane were investigated. The modified membranes were then subjected to filtration using 2000 mg/L pepsin and bovine serum albumin (BSA) solutions as feed. Microscopic and spectroscopic analyses confirmed the successful deposition of AA and HEMA on the membrane surface and the decrease in water contact angle with increasing plasma deposition time strongly indicated the increase in surface hydrophilicity due to the considerable enrichment of the hydrophilic segment of AA and HEMA on the membrane surface. However, a prolonged plasma deposition time (>15 s) should be avoided as it led to the formation of a thicker coating layer that significantly reduced the membrane pure water flux with no significant change in the solute rejection rate. Upon 15-s plasma deposition, the AA-modified membrane recorded the pepsin and BSA rejections of 83.9% and 97.5%, respectively, while the HEMA-modified membrane rejected at least 98.5% for both pepsin and BSA. Compared to the control membrane, the AA-modified and HEMA-modified membranes also showed a lower degree of flux decline and better flux recovery rate (>90%), suggesting that the membrane antifouling properties were improved and most of the fouling was reversible and could be removed via simple water cleaning process. We demonstrated in this work that the PECVD technique is a promising surface modification method that could be employed to rapidly improve membrane surface hydrophilicity (15 s) for the enhanced protein purification process without using any organic solvent during the plasma modification process.


RSC Advances ◽  
2015 ◽  
Vol 5 (19) ◽  
pp. 14147-14155 ◽  
Author(s):  
A. Moslehyani ◽  
A. F. Ismail ◽  
M. H. D. Othman ◽  
T. Matsuura

This paper focuses on the potential of a novel flat sheet nanocomposite titanium dioxide (TiO2)-halloysite nanotubes (HNTs)/polyvinylidene fluoride (PVDF) membrane as a photocatalytic separator in the photocatalytic membrane reactor (PMR).


2017 ◽  
Vol 353 ◽  
pp. 152-161 ◽  
Author(s):  
Cristina Lavorato ◽  
Pietro Argurio ◽  
Teresa F. Mastropietro ◽  
Giuseppe Pirri ◽  
Teresa Poerio ◽  
...  

2013 ◽  
Vol 671-674 ◽  
pp. 2571-2574 ◽  
Author(s):  
Zhi Yang Wang ◽  
Ling Wang ◽  
Lin Fei Yao ◽  
Mei Le Pei ◽  
Guo Liang Zhang

Membrane separation coupled with photocatalysis process, which is also called photocatalytic membrane reactor (PMR), is a new hybrid technology working for water supply and wastewater treatment. Due to some unique advantages, such as nontoxic and continuous running, this kind of novel coupling systems has developed rapidly in the past few years. In this work, the characteristic and structure of configurations, photocatalysts and membranes are analyzed briefly.


2017 ◽  
Vol 330 ◽  
pp. 531-540 ◽  
Author(s):  
Mélisa Hatat-Fraile ◽  
Robert Liang ◽  
Maricor J. Arlos ◽  
Rui Xiu He ◽  
Peng Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document