scholarly journals Fabrication of bead-on-string polyacrylonitrile nanofibrous air filters with superior filtration efficiency and ultralow pressure drop

2020 ◽  
Vol 237 ◽  
pp. 116377 ◽  
Author(s):  
Jinhui Jeanne Huang ◽  
Yuxiao Tian ◽  
Rong Wang ◽  
Miao Tian ◽  
Yuan Liao
Author(s):  
Ajay Kumar Maddineni ◽  
Dipayan Das ◽  
Ravi Mohan Damodaran

In this work, oil-treated pleated fibrous air filters were developed, characterized, and evaluated for motorcycle engine intake application. The effect of pleat geometry on the filtration performance was examined. Pleat pitch and pleat height were found to play important roles in determining the filtration efficiency, pressure drop, and dust holding capacity. A pleated fibrous filter prepared with optimum levels of pleat pitch and pleat height showed the best filtration performance. The treatment to the pleated filter by viscous oil yielded remarkably higher dust holding capacity and filtration efficiency, both at cleaned and clogged conditions. A statistical analysis revealed that the weight of oil played a significant role in deciding the filtration performance. The oil-treated pleated filter was installed in a commercial air intake system and its filtration performance was assessed. The filter element displayed a significant delay in evolution of pressure drop during dust loading as compared to the untreated one. However, the difference in filtration efficiency between the oil-treated and untreated filter elements was not found to be too high. Nevertheless, both of them met the standard filtration performance as per the best practices followed by the automotive industry. Overall, the oil treatment to cellulosic filters was found to be highly advantageous for motorcycle application. Practical implications of such air filter system were discussed in terms of service life, fuel consumption, and CO2 emission during filter life time.


2020 ◽  
Vol 10 (8) ◽  
pp. 2686
Author(s):  
Ching-Wen Lou ◽  
Ying-Huei Shih ◽  
Chen-Hung Huang ◽  
Shu-An Lee ◽  
Yueh-Sheng Chen ◽  
...  

In this study, titanium dioxide (TiO2), a mineral with a potential and supercapacitor, is used as the reinforcing material to improve the filtration efficacy of electret melt-blown fabrics. Next, the electret melt-blown fabrics are evaluated in terms of surface voltage and filtration efficiency, thereby examining the influences of the TiO2 ratio and electric field intensity. The test results indicate that the filtration efficiency is proportional to the ratio of TiO2 and electric field intensity. In particular, with a TiO2 ratio of 3 wt% and an electric field intensity of 2.5 kV/cm, the electret melt-blown fabrics demonstrate a maximal filtration efficiency of 96.32%, a lowest pressure drop of 40 Pa, and an optimal quality factor of 0.083 Pa−1.


2020 ◽  
pp. 146808742091667
Author(s):  
Onoufrios Haralampous ◽  
Marios Mastrokalos ◽  
Fotini Tzorbatzoglou ◽  
Chris Dritselis

A model suitable for wall-flow particulate filters with partial rear plug damage is developed and experimentally validated in this work. A ceramic filter with 16% of the rear plugs mechanically removed is tested at steady-state conditions on the engine bench and transient driving cycle conditions on the chassis dynamometer. After decanning of the monolith, destructive analysis is conducted to identify deposit loading variations and scanning electron microscopy is used to study the deposit structures in the channels. It is shown that channels without rear plugs develop distinct deposit structures in the entry zone. Hence, a local pressure loss coefficient is applied to model the effect of entrance flow constrictions, taking also into account deposit restructuring phenomena at higher flow rates. In addition, a deep-bed filtration submodel is used to capture the effect of non-uniform wall velocities on deposit accumulation in the wall. The modified model is first fitted to the engine bench data and then validated in a wider range of conditions using the driving cycle tests. With the exception of prolonged steady-state loading conditions, good pressure drop and filtration efficiency predictions are obtained throughout the tests in conjunction with correct deposit property profiles. Notably, the cold-start worldwide harmonized light vehicles test cycle shows that the current European on-board diagnosis threshold limit for particulate mass is too relaxed to trigger a malfunction indication for moderate filter faults. In conclusion, the model can be applied in damaged particulate filter studies for the assessment of leaked particulate mass, the specification of more effective legislation limits and the development of rigorous on-board diagnosis systems and algorithms.


2013 ◽  
Vol 311 ◽  
pp. 243-248
Author(s):  
Wei Cheng Chu ◽  
Chin Pan Huang ◽  
Tien Wei Shyr ◽  
Li Chou Chen ◽  
Shu Ping Chiu

For the wide application in the field of filtration and bio-medicine, the purpose of this study is to design a spinneret module of electro-spun which can produce composite nonwoven with sub-micrometer fiber continually. Applying the principle of melt-blown, a spinneret module with line-type and multi-holes which was assembled with small beads and filtering net, was designed. In order to construct a continual electro-spun production line, a traversal device was designed to control the traverse-motion of spinneret module for the even lapping and a stainless plate was adopted as collecting plate. In condition of 41KV working voltage, 0.3573 mL/min throughput and 42cm CSD (Capillary-Screen-Distance), a continual PEO nonwoven can be produced with average fiber diameter of 576nm and of CV% 13.4%. To a sampling area of 10cm×10cm and basis weight of 7.257 g/m2 electro-spun nonwoven, the CV% of gray level of its image is 2% and its filtration efficiency is up to 91.2% with pressure drop 13.8mm-H20 by TSI 8130 (32LPM, 5% NaCl).


Sign in / Sign up

Export Citation Format

Share Document