Design and Evaluation of Spinneret Module with Line-Type and Multi-Holes of Electro-Spun

2013 ◽  
Vol 311 ◽  
pp. 243-248
Author(s):  
Wei Cheng Chu ◽  
Chin Pan Huang ◽  
Tien Wei Shyr ◽  
Li Chou Chen ◽  
Shu Ping Chiu

For the wide application in the field of filtration and bio-medicine, the purpose of this study is to design a spinneret module of electro-spun which can produce composite nonwoven with sub-micrometer fiber continually. Applying the principle of melt-blown, a spinneret module with line-type and multi-holes which was assembled with small beads and filtering net, was designed. In order to construct a continual electro-spun production line, a traversal device was designed to control the traverse-motion of spinneret module for the even lapping and a stainless plate was adopted as collecting plate. In condition of 41KV working voltage, 0.3573 mL/min throughput and 42cm CSD (Capillary-Screen-Distance), a continual PEO nonwoven can be produced with average fiber diameter of 576nm and of CV% 13.4%. To a sampling area of 10cm×10cm and basis weight of 7.257 g/m2 electro-spun nonwoven, the CV% of gray level of its image is 2% and its filtration efficiency is up to 91.2% with pressure drop 13.8mm-H20 by TSI 8130 (32LPM, 5% NaCl).

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Si Cheng ◽  
Alam S. M. Muhaiminul ◽  
Zhonghua Yue ◽  
Yan Wang ◽  
Yuanxiang Xiao ◽  
...  

AbstractBy applying the simultaneous corona-temperature treatment, the effect of electret temperature on the structure and filtration properties of melt-blown nonwovens was investigated. Fiber diameter, pore size, thickness, areal weight, porosity, crystallinity, filtration efficiency, and pressure drop were evaluated. The results demonstrated that some changes occurred in the structure of electret fabrics after treatment under different temperatures. In the range of 20°C~105°C, the filtration efficiency of melt-blown nonwovens has a relationship with the change in crystallinity, and the pressure drop increased because of the change in areal weight and porosity. This work may provide a reference for further improving filtration efficiency of melt-blown nonwovens.


2020 ◽  
Vol 20 (4) ◽  
pp. 366-371 ◽  
Author(s):  
Yuanxiang Xiao ◽  
Nazmus Sakib ◽  
Zhonghua Yue ◽  
Yan Wang ◽  
Si Cheng ◽  
...  

AbstractIn this study, polypropylene meltblown nonwoven fabrics with different structure parameters such as fiber diameter, pore size, and areal density were prepared by the industrial production line. The morphology of meltblown nonwoven fibers was evaluated by using scanning electron microscope, and the diameter of fibers was analyzed by using image-pro plus software from at least 200 measurements. The pore size of nonwoven fabric was characterized by a CFP-1500AE type pore size analyzer. The filtration efficiency and pressure drop were evaluated by TSI8130 automatic filter. The results showed that the pressure drop of nonwoven fabrics decreased with the increase in pore size; the filtration efficiency and the pressure drop had a positive correlation with the areal density. However, when the areal density is in the range of 27–29 g/m2, both filtration efficiency and pressure drop decreased with the increase of areal density; when the areal density was kept constant, the filtration efficiency decreased as the pore size decreased; when the pore size of the meltblown nonwoven fabric is less than 17 μm, the filtration efficiency increased as the pore diameter decreased; when the pore diameter of the nonwoven fabric is larger than 17 μm. In a wide range, the pressure drop decreased as the fiber diameter decreased.


2020 ◽  
pp. 146808742091667
Author(s):  
Onoufrios Haralampous ◽  
Marios Mastrokalos ◽  
Fotini Tzorbatzoglou ◽  
Chris Dritselis

A model suitable for wall-flow particulate filters with partial rear plug damage is developed and experimentally validated in this work. A ceramic filter with 16% of the rear plugs mechanically removed is tested at steady-state conditions on the engine bench and transient driving cycle conditions on the chassis dynamometer. After decanning of the monolith, destructive analysis is conducted to identify deposit loading variations and scanning electron microscopy is used to study the deposit structures in the channels. It is shown that channels without rear plugs develop distinct deposit structures in the entry zone. Hence, a local pressure loss coefficient is applied to model the effect of entrance flow constrictions, taking also into account deposit restructuring phenomena at higher flow rates. In addition, a deep-bed filtration submodel is used to capture the effect of non-uniform wall velocities on deposit accumulation in the wall. The modified model is first fitted to the engine bench data and then validated in a wider range of conditions using the driving cycle tests. With the exception of prolonged steady-state loading conditions, good pressure drop and filtration efficiency predictions are obtained throughout the tests in conjunction with correct deposit property profiles. Notably, the cold-start worldwide harmonized light vehicles test cycle shows that the current European on-board diagnosis threshold limit for particulate mass is too relaxed to trigger a malfunction indication for moderate filter faults. In conclusion, the model can be applied in damaged particulate filter studies for the assessment of leaked particulate mass, the specification of more effective legislation limits and the development of rigorous on-board diagnosis systems and algorithms.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1307 ◽  
Author(s):  
Ting-Ting Li ◽  
Xixi Cen ◽  
Hai-Tao Ren ◽  
Fei Sun ◽  
Qi Lin ◽  
...  

A bark-like imitated polypr opylene (PP)/polycarbonate (PC) nanofibrous membrane was constructed by one-step meltblown technique for efficient particulate matter (PM) removal. The effects of PC content (0%, 1%, 3%, 5%, and 7%) on membrane thermal stability, microscopic characteristics, filtration performance, hydrophilicity, and water vapor transmission were investigated. The results demonstrated that using facile design of incompatibility and viscosity difference between PC and PP polymers decreases average fiber diameter, creating a bark-like groove appearance and increasing surface potential, making a new PP/PC membrane with high filtration performance. The resultant PP/PC membrane had finer average fiber diameter of 0.63 μm, which was nearly 89.41% lower than PP membranes (5.95 μm), and its quality factor (0.036 Pa−1) was nearly 2.12 times than that of PP membranes (0.017 Pa−1) with the die hole diameter of 0.5 mm. This fabrication technique of a special meltblown filter membrane saves the cost of die retrofitting and post-processing, which provides an innovative method for particulate efficient removal of high efficient filters.


Sign in / Sign up

Export Citation Format

Share Document