Large-scale production of 4MoO3·2NH3·H2O nanosheets through antisolvent crystallization for highly efficient removal of cationic dyes

Author(s):  
Yuqi Zhang ◽  
Xiang Yu ◽  
Li Xing ◽  
Tingting Fan ◽  
Xinyi Lian ◽  
...  
2021 ◽  
Author(s):  
Linhua Li ◽  
Baojie Dou ◽  
Jianwu Lan ◽  
Jiaojiao Shang ◽  
Yafang Wang ◽  
...  

Abstract Adsorbents with superior adsorption capacity and facile recyclability are viewed as promising materials for dye wastewater treatment. In this work, a novel sulfonate decorated cotton fiber as a biodegradable and recyclable adsorbent was fabricated for highly efficient removal of cationic dyes. Herein, the poly(sodium p-styrenesulfonate-co-N-methylol acrylamide) (P(SSNa-co-NMAM)) with SSNa units as adsorption sites and NMAM units as thermal-crosslinking points was synthesized for modification of cotton fibers in a large scale at high temperature (160 oC). The various characterization investigations confirmed the successful construction of the P(SSNa-co-NMAM) coated cotton fibers (PCF). As expected, the as-obtained adsorbent presented outstanding adsorption performance toward cationic dyes in the both static and dynamic states, even in the synthetic effluent. The adsorption processes of cationic dyes onto the PCF were well fitted by the Langmuir isotherm model and Pseudo-second-order kinetics, respectively. The thermodynamics study showed that the adsorption reaction of the cationic dyes onto PCF was a spontaneous and endothermic process. The maximum adsorption capacities of PCF toward MEB, RhB and MG were 3976.10, 2879.80 and 3071.55 mg/g, respectively. The responsible adsorption of dyes ontothe PCF was electrostatic interaction. Moreover, the adsorption capacity of PCF toward cationic dyes was slight influenced by pH value of solution, because of the stable feature of sulfonate moiety in acid and alkali. In addition, the as-prepared PCF exhibited satisfactory recyclability and reusability. Given the aforementioned results, the as-obtained PCF is a promising adsorbent with great potential for practical application in the dye-contaminated wastewater remediation.


2020 ◽  
Vol 10 (22) ◽  
pp. 8262
Author(s):  
Assadawoot Srikhaow ◽  
Teera Butburee ◽  
Weeraphat Pon-On ◽  
Toemsak Srikhirin ◽  
Kanchana Uraisin ◽  
...  

This work reports the preparation and utility of cysteine-functionalized carbon-coated Fe3O4 materials (Cys-C@Fe3O4) as efficient sorbents for remediation of Hg(II)-contaminated water. Efficient removal (90%) of Hg(II) from 1000 ppb aqueous solutions is possible, at very low Cys-C@Fe3O4 sorbent loadings (0.01 g sorbent per liter of Hg(II) solution). At low metal concentrations (5–100 ppb Hg(II)), where adsorption is typically slow, Hg(II) removal efficiencies of 94–99.4% were achievable, resulting in final Hg(II) levels of <1.0 ppb. From adsorption isotherms, the Hg(II) adsorption capacity for Cys-C@Fe3O4 is 94.33 mg g−1, around three times that of carbon-coated Fe3O4 material. The highest partition coefficient (PC) of 2312.5 mgg−1µM−1 was achieved at the initial Hg (II) concentration of 100 ppb, while significantly high PC values of 300 mgg−1µM−1 and above were also obtained in the ultralow concentration range (≤20 ppb). Cys-C@Fe3O4 exhibits excellent selectivity for Hg(II) when tested in the presence of Pb(II), Ni(II), and Cu(II) ions, is easily separable from aqueous media by application of an external magnet, and can be regenerated for three subsequent uses without compromising Hg(II) uptake. Derived from commercially available raw materials, it is highly possible to achieve large-scale production of the functional sorbent for practical applications.


1993 ◽  
Vol 32 (1) ◽  
pp. 129-131
Author(s):  
Naureen Talha

The literature on female labour in Third World countries has become quite extensive. India, being comparatively more advanced industrially, and in view of its size and population, presents a pictures of multiplicity of problems which face the female labour market. However, the author has also included Mexico in this analytical study. It is interesting to see the characteristics of developing industrialisation in two different societies: the Indian society, which is conservative, and the Mexican society, which is progressive. In the first chapter of the book, the author explains that he is not concerned with the process of industrialisation and female labour employed at different levels of work, but that he is interested in forms of production and women's employment in large-scale production, petty commodity production, marginal small production, and self-employment in the informal sector. It is only by analysis of these forms that the picture of females having a lower status is understood in its social and political setting.


2018 ◽  
Vol 15 (4) ◽  
pp. 572-575 ◽  
Author(s):  
Ponnusamy Kannan ◽  
Samuel I.D. Presley ◽  
Pallikondaperumal Shanmugasundaram ◽  
Nagapillai Prakash ◽  
Deivanayagam Easwaramoorthy

Aim and Objective: Itopride is a prokinetic agent used for treating conditions like non-ulcer dyspepsia. Itopride is administered as its hydrochloride salt. Trimethobenzamide is used for treating nausea and vomiting and administered as its hydrochloride salt. The aim is to develop a novel and environmental friendly method for large-scale production of itopride and trimethobenzamide. Materials and Methods: Itopride and trimethobenzamide can be prepared from a common intermediate 4- (dimethylaminoethoxy) benzyl amine. The intermediate is prepared from one pot synthesis using Phyrdroxybenzaldehye and zinc dust and further reaction of the intermediate with substituted methoxy benzoic acid along with boric acid and PEG gives itopride and trimethobenzamide. Results: The intermediate 4-(dimethylaminoethoxy) benzylamine is prepared by treating p-hydroxybenzaldehyde and 2-dimethylaminoethyl chloride. The aldehyde formed is treated with hydroxylamine hydrochloride. The intermediate is confirmed by NMR and the purity is analysed by HPLC. Conclusion: Both itopride and trimethobenzamide were successfully synthesized by this method. The developed method is environmental friendly, economical for large-scale production with good yield and purity.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 241
Author(s):  
Shaden A. M. Khalifa ◽  
Eslam S. Shedid ◽  
Essa M. Saied ◽  
Amir Reza Jassbi ◽  
Fatemeh H. Jamebozorgi ◽  
...  

Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


Sign in / Sign up

Export Citation Format

Share Document