Screening aptamers targeting the cell membranes of clinical cancer tissues on an integrated microfluidic system

2021 ◽  
Vol 330 ◽  
pp. 129334
Author(s):  
Yi-Cheng Tsai ◽  
Cheng-Sheng Lin ◽  
Chang-Ni Lin ◽  
Keng-Fu Hsu ◽  
Gwo-Bin Lee
2021 ◽  
Vol 15 (1) ◽  
pp. 57-67
Author(s):  
Zhe Wang ◽  
Chenhao Jiang ◽  
Lijuan Pang ◽  
Wei Jia ◽  
Chengyan Wang ◽  
...  

Aim: The aim is to study ANXA2 biomarkers for early diagnosis of cervical cancer. Materials & methods: The study used bioinformatics analysis and experimental verification of ANXA2 expression in cervical cancer. Results: ANXA2 expression was higher in cancer tissues than in non-cancer tissues (p = 0.002). ANXA2 was expressed in cell membranes of non-cancer tissues, whereas in cancer tissues it was expressed in both the cell membranes and the cytoplasm. Moreover, ANXA2 expression was more pronounced in squamous cell carcinomas. ANXA2 expression decreased overall survival of patients, and the data suggested that protein expression was associated with invasion and migration of tumors. Conclusion: ANXA2 has high specificity and sensitivity as a detection marker for cervical cancer and can assist in the diagnosis of cervical cancer.


Lab on a Chip ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 725-734
Author(s):  
Cheng-Sheng Lin ◽  
Yi-Cheng Tsai ◽  
Keng-Fu Hsu ◽  
Gwo-Bin Lee

Optimization of aptamer selection using tissue samples has been carried out on an automated microfluidic system and one screened aptamer exhibited high specificity and affinity towards ovarian cancer tissue.


2002 ◽  
Vol 278 (8) ◽  
pp. 6482-6489 ◽  
Author(s):  
Paul J. Adam ◽  
Robert Boyd ◽  
Kerry L. Tyson ◽  
Graham C. Fletcher ◽  
Alasdair Stamps ◽  
...  

2019 ◽  
Vol 13 (1) ◽  
pp. 014114 ◽  
Author(s):  
Wei-Ting Liu ◽  
Wen-Bin Lee ◽  
Yi-Cheng Tsai ◽  
Yuan-Jhe Chuang ◽  
Keng-Fu Hsu ◽  
...  

2022 ◽  
Author(s):  
Tingfang Yi ◽  
Gerhard Wagner

Cancer drug pan-resistant tumor metastasis (cdp-rtm) is a major source of cancer lethality. Cytocapsular tubes (CCTs) and their networks are physical membrane-enclosed freeway systems for cancer cell dissemination across tissues and organs in vivo. Whether cytocapsular tube superlarge biomembranes function as superdenfence and conduct cdp-rtm is unknown. It is also unknown whether conventional cancer drug development methods, including cancer cell line derived xenograft (CDX) and patient cancer cell derived xenograft (PDX), generate cytocapsular tubes (CCTs). It is also unclear whether xenografts can be created that contain CCTs for efficient cancer drug development. Here, we investigated CCT functions related to cancer drug resistance, CCTs in CDX and PDX and CCT xenograft (CCTX). Using clinical cancer tissues, we discovered that CCTs potently shielded against multiple chemotherapy treatments with diverse conventional cancer drugs. Next, our quantitative analyses show that CCT biomembrane drug barriers significantly increase cancer drug resistance by 6.6-folds to14-folds. We found that conventional CDX and PDX animal models do not generate CCTs in these xenografts. By mimicking in vivo cancer cell environments for cancer patient cancer cell culturing, we have successfully isolated CH-5high/CH-6high subpopulations of patient breast cancer cells and pancreas cancer cells that are propertied with cytocapsular tube generation capacities and engender large quantities of CCTs in mouse xenografts. Biochemical and immunohistochemistry analyses demonstrated that CCTs in these xenografts are similar to those in clinical cancer tissues. In summary, our research has identified that CCTs and networks function as physical superdefence freeway systems conducting conventional cancer drug pan-resistant tumor metastasis, and developed a CCTX platform for highly efficient cancer drug development, which pave avenues for more efficient development of effective and precise cancer drugs for tumor cure at both personal and broad-spectrum levels.


Author(s):  
A. Tonosaki ◽  
M. Yamasaki ◽  
H. Washioka ◽  
J. Mizoguchi

A vertebrate disk membrane is composed of 40 % lipids and 60 % proteins. Its fracture faces have been classed into the plasmic (PF) and exoplasmic faces (EF), complementary with each other, like those of most other types of cell membranes. The hypothesis assuming the PF particles as representing membrane-associated proteins has been challenged by serious questions if they in fact emerge from the crystalline formation or decoration effects during freezing and shadowing processes. This problem seems to be yet unanswered, despite the remarkable case of the purple membrane of Halobacterium, partly because most observations have been made on the replicas from a single face of specimen, and partly because, in the case of photoreceptor membranes, the conformation of a rhodopsin and its relatives remains yet uncertain. The former defect seems to be partially fulfilled with complementary replica methods.


Author(s):  
R.J. Barrnett

This subject, is like observing the panorama of a mountain range, magnificent towering peaks, but it doesn't take much duration of observation to recognize that they are still in the process of formation. The mountains consist of approaches, materials and methods and the rocky substance of information has accumulated to such a degree that I find myself concentrating on the foothills in the foreground in order to keep up with the advance; the edifices behind form a wonderous, substantive background. It's a short history for such an accumulation and much of it has been moved by the members of the societies that make up this International Federation. My panel of speakers are here to provide what we hope is an interesting scientific fare, based on the fact that there is a continuum of biological organization from biochemical molecules through macromolecular assemblies and cellular membranes to the cell itself. Indeed, this fact explains the whole range of towering peaks that have emerged progressively during the past 25 years.


Author(s):  
Dong Yuming ◽  
Yang Guanglin ◽  
Du Wei Dong ◽  
Xu Ai Liam

The activities and distributions of AKPase ,ACPase,G6Pase,TPPase and COase in human normal gastric mucosa and gastric cancer tissues were studied histochemically at light microscopic level. These enzymes are the marker enzymes of cell membrane lysosome endoplasmic reticulum, Golgi apparatus and mitochondrion objectively. On the basis of the research we set up a special ultrastructural cytochemical technique and first researched into gastric cancer domesticly. Ultrastructural cytochemistry is also called electron microscopic cytochemistry. This new technique possesses both the sensitivity of cytochemical reaction andi the high resolution of electron microscope. It is characterized by direct observation,exact localization and the combination morphology with function.The distributions of AKPase,ACPase,G6Pase,TPPase and COase in 14 cases of gastric cancer and 1 case of gastric Denign lesion were studied ultrastructurally. The results showed: 1. normal gastric epithelium had no AKPase reaction. The reaction of ACPase,G6Pase,TPPase and Coase were found in the corresponding organella, which were consistent with their function.


2007 ◽  
Vol 177 (4S) ◽  
pp. 223-223
Author(s):  
Sreenivasa R. Chinni ◽  
Hamilto Yamamoto ◽  
Zhong Dong ◽  
Aaron Sabbota ◽  
Sanaa Nabha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document