Low-cost high- performance NO2 sensor based on nanoporous indium tin oxide (ITO) film

2021 ◽  
pp. 130440
Author(s):  
Xiaohong Zheng ◽  
Xinfeng Qiao ◽  
Fengyu Luo ◽  
Bo Wan ◽  
Cheng Zhang
Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1489
Author(s):  
Bhaskar Parida ◽  
Saemon Yoon ◽  
Dong-Won Kang

Materials and processing of transparent electrodes (TEs) are key factors to creating high-performance translucent perovskite solar cells. To date, sputtered indium tin oxide (ITO) has been a general option for a rear TE of translucent solar cells. However, it requires a rather high cost due to vacuum process and also typically causes plasma damage to the underlying layer. Therefore, we introduced TE based on ITO nanoparticles (ITO-NPs) by solution processing in ambient air without any heat treatment. As it reveals insufficient conductivity, Ag nanowires (Ag-NWs) are additionally coated. The ITO-NPs/Ag-NW (0D/1D) bilayer TE exhibits a better figure of merit than sputtered ITO. After constructing CsPbBr3 perovskite solar cells, the device with 0D/1D TE offers similar average visible transmission with the cells with sputtered ITO. More interestingly, the power conversion efficiency of 0D/1D TE device was 5.64%, which outperforms the cell (4.14%) made with sputtered-ITO. These impressive findings could open up a new pathway for the development of low-cost, translucent solar cells with quick processing under ambient air at room temperature.


2011 ◽  
Vol 1288 ◽  
Author(s):  
Khayankhyarvaa Sarangerel ◽  
Altantsetseg Delgerjargal ◽  
Byambasuren Delgertsetseg ◽  
Chimed Ganzorig

ABSTRACTOrganic thin film photovoltaic (PV) cells have attracted attention because of their ease of fabrication and potential for low cost production. In this paper, we study the effects of chemical modification of indium-tin-oxide (ITO) on the performance of organic PV cells. The organic PV cells are fabricated, with the cell configuration of ITO/copper phthalocyanine (CuPc) (20 nm)/fullerene (C60) (40 nm)/Al with and without bathocuproine (BCP) (10 nm) between C60 and Al. By the use of para-substituted benzenesulfonyl chlorides with different terminal groups of H- and Cl-, the energy offset at the ITO/CuPc interface is tuned widely depending upon the interface dipoles and thus the correlation between the change in the ITO work function and the performance of the PV cells by chemical modification is examined.


2018 ◽  
Vol 662 ◽  
pp. 90-96 ◽  
Author(s):  
Juan Tirado ◽  
Daniel Ramirez ◽  
Rafael Betancur ◽  
Franklin Jaramillo

2020 ◽  
Vol 20 (6) ◽  
pp. 3356-3360
Author(s):  
Hao Yong Yin ◽  
Yi Fan Zheng ◽  
Ling Wang

We report the formation of gold nanoparticles on indium tin oxide conducting glass (ITO) surface via electrodeposition method at room temperature. The prepared nano-Au electrodes has been fabricated for sensitive detection of Pb2+, and showed highly selective response toward Pb2+. The electrochemical detection of Pb2+ were determined by differential pulse stripping voltammetric (DPSV). The nano-Au electrochemical sensor could detect Pb2+ from 0.5 to 10 μM with detection limits of 0.06 μM (S/N= 3) and sensitivity of 0.27996 mA μM−1. The proposed sensor is simple, reliable, sensitive, selective, and low-cost, thus holds potential for practical application in Pb2+ detection.


2008 ◽  
Vol 47 (9) ◽  
pp. 7023-7025 ◽  
Author(s):  
Shun-Cheng Hsu ◽  
Dong-Sing Wuu ◽  
Xinhe Zheng ◽  
Ray-Hua Horng ◽  
Juh-Yuh Su

2009 ◽  
Vol 1209 ◽  
Author(s):  
Marie-Isabelle Baraton

AbstractThe field of major applications of transparent conducting oxides (TCOs) continues to expand, thus generating a growing demand for new materials with lower resistivity and higher transparency over extended wavelength ranges. Moreover, p-type TCOs are opening new horizons for high-performance devices based on p-n junctions. Among the most commonly used TCO materials are zinc oxide (ZnO), indium tin oxide (ITO), tin oxide (SnO2), and indium oxide (In2O3). Still, design and synthesis of improved TCO materials leading to a marked increase in conductivity and robustness remain highly desirable while a more detailed understanding of the conductivity mechanisms is critical to further improvement. For example, there is an accelerating effort worldwide by both academia and industry to develop a transparent conductor that can meet or beat the performance of the commonly used ITO at lower costs and with more physical resilience. This article reviews new developments in TCO materials to be used in various applications spanning from photovoltaics to lighting, smart windows, or gas sensors. The financial stakes, far from being negligible in the TCOs market, and the current scientific and technological challenges to be taken up are analyzed.


2000 ◽  
Vol 370 (1-2) ◽  
pp. 155-162 ◽  
Author(s):  
T. Nakao ◽  
T. Nakada ◽  
Y. Nakayama ◽  
K. Miyatani ◽  
Y. Kimura ◽  
...  

2017 ◽  
Vol 5 (17) ◽  
pp. 4198-4205 ◽  
Author(s):  
Soram Bobby Singh ◽  
Yibin Hu ◽  
Tolendra Kshetri ◽  
Nam Hoon Kim ◽  
Joong Hee Lee

Flexible transparent conducting electrodes (TCEs) in replacement of brittle indium tin oxide (ITO) films are of ultimate importance in the production of flexible and stretchable displays, lighting devices, and solar panels with the ability to resist harsh weather conditions.


Sign in / Sign up

Export Citation Format

Share Document