Energy performance impact of using phase-change materials in thermal storage walls of detached residential buildings with a sunspace

Solar Energy ◽  
2020 ◽  
Vol 206 ◽  
pp. 228-244 ◽  
Author(s):  
Ana Vukadinović ◽  
Jasmina Radosavljević ◽  
Amelija Đorđević
Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3241
Author(s):  
Krzysztof Powała ◽  
Andrzej Obraniak ◽  
Dariusz Heim

The implemented new legal regulations regarding thermal comfort, the energy performance of residential buildings, and proecological requirements require the design of new building materials, the use of which will improve the thermal efficiency of newly built and renovated buildings. Therefore, many companies producing building materials strive to improve the properties of their products by reducing the weight of the materials, increasing their mechanical properties, and improving their insulating properties. Currently, there are solutions in phase-change materials (PCM) production technology, such as microencapsulation, but its application on a large scale is extremely costly. This paper presents a solution to the abovementioned problem through the creation and testing of a composite, i.e., a new mixture of gypsum, paraffin, and polymer, which can be used in the production of plasterboard. The presented solution uses a material (PCM) which improves the thermal properties of the composite by taking advantage of the phase-change phenomenon. The study analyzes the influence of polymer content in the total mass of a composite in relation to its thermal conductivity, volumetric heat capacity, and diffusivity. Based on the results contained in this article, the best solution appears to be a mixture with 0.1% polymer content. It is definitely visible in the tests which use drying, hardening time, and paraffin absorption. It differs slightly from the best result in the thermal conductivity test, while it is comparable in terms of volumetric heat capacity and differs slightly from the best result in the thermal diffusivity test.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 41
Author(s):  
Hanae El Fakiri ◽  
Lahoucine Ouhsaine ◽  
Abdelmajid El Bouardi

The thermal dynamic behavior of buildings represents an important aspect of the energy efficiency and thermal comfort of the indoor environment. For this, phase change material (PCM) wallboards integrated into building envelopes play an important role in stabilizing the temperature of the human comfort condition. This article provides an assessment of the thermal behavior of a “bi-zone” building cell, which was built based on high-energy performance (HEP) standards and heated by a solar water heater system through a hydronic circuit. The current study is based on studying the dynamic thermal behavior, with and without implantation of PCMs on envelope structure, using a simplified modeling approach. The evolution of the average air temperature was first evaluated as a major indicator of thermal comfort. Then, an evaluation of the thermal behavior’s dynamic profile was carried out in this study, which allowed for the determination of the PCM rate anticipation in the thermal comfort of the building cell.


2021 ◽  
Vol 11 (4) ◽  
pp. 1390
Author(s):  
Rocío Bayón

Thermal energy storage using phase change materials (PCMs) is a research topic that has attracted much attention in recent decades [...]


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Luigi Coppola ◽  
Denny Coffetti ◽  
Sergio Lorenzi

The paper focuses on the evaluation of the rheological and mechanical performances of cement-based renders manufactured with phase-change materials (PCM) in form of microencapsulated paraffin for innovative and ecofriendly residential buildings. Specifically, cement-based renders were manufactured by incorporating different amount of paraffin microcapsules—ranging from 5% to 20% by weight with respect to binder. Specific mass, entrained or entrapped air, and setting time were evaluated on fresh mortars. Compressive strength was measured over time to evaluate the effect of the PCM addition on the hydration kinetics of cement. Drying shrinkage was also evaluated. Experimental results confirmed that the compressive strength decreases as the amount of PCM increases. Furthermore, the higher the PCM content, the higher the drying shrinkage. The results confirm the possibility of manufacturing cement-based renders containing up to 20% by weight of PCM microcapsules with respect to binder.


Energies ◽  
2016 ◽  
Vol 9 (8) ◽  
pp. 605 ◽  
Author(s):  
Marine Auzeby ◽  
Shen Wei ◽  
Chris Underwood ◽  
Jess Tindall ◽  
Chao Chen ◽  
...  

2021 ◽  
pp. 131208
Author(s):  
Qinglin Li ◽  
Xiaodong Ma ◽  
Xiaoyu Zhang ◽  
Jiqiang Ma ◽  
Xiaowu Hu ◽  
...  

2017 ◽  
Vol 21 (6 Part A) ◽  
pp. 2525-2532 ◽  
Author(s):  
Shailendra Kumar ◽  
Kishan Kumar

The present study explores suitability of two phase change materials (PCM) for development of an active thermal storage system for a solar drying kiln by studying their melting and solidification behaviors. A double glass glazing prototype solar kiln was used in the study. The storage system consisted of a water storage tank with PCM placed inside the water in high density polyethylene containers. The water in the tank was heated with help of solar energy using an evacuated tube collector array. The melting and solidification temperature curves of PCM were obtained by charging and discharging the water tank. The study illustrated the utility of the PCM in using the stored thermal energy during their discharge to enhance the temperature inside the kiln. The rate of temperature reduction was found to be higher for paraffin wax as compared to a fatty acid based PCM. The water temperature during the discharge of the PCM showed dependence on the discharge characteristics of each PCM suggesting their suitability in designing active thermal storage systems.


2021 ◽  
Vol 16 (1) ◽  
pp. 032-041
Author(s):  
Pradeep N ◽  
Somesh Subramanian S

Thermal energy storage through phase change material has been used for wide applications in the field of air conditioning and refrigeration. The specific use of this thermal storage has been for energy storage during low demand and release of this energy during peak loads with potential to provide energy savings due to this. The principle of latent heat storage using phase change materials (PCMs) can be incorporated into a thermal storage system suitable for using deep freezers. The evaporator is covered with another box which has storage capacity or passage through phase change material. The results revealed that the performance is increased from 3.2 to 3.5 by using PCM.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7223
Author(s):  
Marco A. Orozco ◽  
Karen Acurio ◽  
Francis Vásquez-Aza ◽  
Javier Martínez-Gómez ◽  
Andres Chico-Proano

This study presents the energy storage potential of nitrate salts for specific applications in energy systems that use renewable resources. For this, the thermal, chemical, and morphological characterization of 11 samples of nitrate salts as phase change materials (PCM) was conducted. Specifically, sodium nitrate (NaNO3), sodium nitrite (NaNO2), and potassium nitrate (KNO3) were considered as base materials; and various binary and ternary mixtures were evaluated. For the evaluation of the materials, differential Fourier transform infrared spectroscopy (FTIR), scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) to identify the temperature and enthalpy of phase change, thermal stability, microstructure, and the identification of functional groups were applied. Among the relevant results, sodium nitrite presented the highest phase change enthalpy of 220.7 J/g, and the mixture of 50% NaNO3 and 50% NaNO2 presented an enthalpy of 185.6 J/g with a phase change start and end temperature of 228.4 and 238.6 °C, respectively. This result indicates that sodium nitrite mixtures allow the thermal storage capacity of PCMs to increase. In conclusion, these materials are suitable for medium and high-temperature thermal energy storage systems due to their thermal and chemical stability, and high thermal storage capacity.


Sign in / Sign up

Export Citation Format

Share Document