Numerical study of binary mixture and thermal analysis near a solar radiative heated surface

Solar Energy ◽  
2022 ◽  
Vol 231 ◽  
pp. 262-269
Author(s):  
Mair Khan ◽  
T. Salahuddin ◽  
Qaisar Khan ◽  
Basem Al Alwan ◽  
Mohammad Almesfer
2017 ◽  
Vol 42 (38) ◽  
pp. 24319-24337 ◽  
Author(s):  
M. Ghasemi ◽  
A. Ramiar ◽  
A.A. Ranjbar ◽  
S.M. Rahgoshay

2011 ◽  
Vol 10 (01) ◽  
pp. 135-142
Author(s):  
CHUNMEI ZHANG ◽  
YONGFENG LI

Thermal analysis can be used as one of the basis for the friction pair material selection in high-speed friction braking system. In this study, the experimental results showed that surface temperature could be reduced by increasing the radius of the friction disk or thermal conductivity coefficient of disk material with stable braking; In the early stage of long braking, the temperature on the friction surface rises rapidly, but further braking does not lead to a significant rise in temperature; In the case of short braking, there is not enough time for the friction surface to reach the critical temperature, and the disk surface reaches the maximum temperature at the end of braking. During long braking, the dimensionless time capacity of the friction surface reaching the highest temperature is F0 ≈ 0.1F0s.


2018 ◽  
Vol 272 ◽  
pp. 47-52 ◽  
Author(s):  
Hana Šimonová ◽  
Iva Rozsypalová ◽  
Pavla Rovnaníková ◽  
Petr Daněk ◽  
Zbyněk Keršner

This paper presents the results of the differential thermal analysis of cement matrix samples taken from concrete panels with nominal dimensions of 2300 × 1300 × 150 mm after one-sided exposure to high temperatures. The panels were subjected to maximum nominal temperature loads of 550, 600, 800 and 1000 °C. Concrete was also taken from a reference panel (without temperature loading) and investigated. Five samples with a nominal thickness of 20 mm were taken for thermal analysis. They were cut from the central part of the panels using a diamond blade saw. The thermal analysis covered the effects of temperature load on the concrete to a depth of approximately 100 mm from the heated surface of the panel.


1981 ◽  
Vol 48 (4) ◽  
pp. 707-716
Author(s):  
L. M. Srivastava ◽  
V. P. Srivastava

The flow of a binary mixture of chemically inert incompressible, Newtonian fluids over an infinite plate, set into motion in its plane by impulse and by oscillation, is studied. The binary mixture consists of (i) two different viscous density nonstratified fluids, and (ii) two different viscous density stratified fluids. The exact solutions are obtained using two methods, (i) Laplace transform and (ii) Hankel transform. To further study the velocities and the wall shear stress, asymptotic expansion are found for small and large times. Some other results of physical importance such as results for noninteracting fluids, strongly interacting fluids, and extremely different fluids are also derived and compared analytically with other results. Finally, to gain an insight into the patterns of the flow, numerical study of the results has been made in detail using digital computer. A strong motivation of the present analysis has been the hope that such a theory of fluids is useful in providing some insight in rheological properties of complex fluids as polymers, liquid crystals and, in particular, blood in the vessels of small diameter. Also the theory of fluids might provide an improved understanding of such diverse subjects as diffusion of proteins, swimming of micro-organism and particle deposition in respiratory tract.


1993 ◽  
Vol 115 (1) ◽  
pp. 116-123 ◽  
Author(s):  
A. Faghri ◽  
S. Thomas ◽  
M. M. Rahman

An experimental and numerical study of the heat transfer from a heated horizontal disk to a thin film of liquid is described. The liquid was delivered to the disk by a collar arrangement such that the film thickness and radial velocity were known at the outer radius of the collar. This method of delivery is termed as a controlled impinging jet. Flow visualization tests were performed and heat transfer data were collected along the radius of the disk for different volumetric flow rates and inlet temperatures in the supercritical and subcritical regions. The heat transfer coefficient was found to increase with flow rate when both supercritical and subcritical regions were present on the heated surface. A numerical simulation of this free surface problem was performed, which included the effects of conjugate heat transfer within the heated disk and the liquid. The numerical predictions agree with the experimental results and show that conjugate heat transfer has a significant effect on the local wall temperature and heat transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document