Influence of buffer layer thickness and epilayer’s growth temperature on crystalline quality of InAs0.6P0.4/InP grown by LP-MOCVD

2011 ◽  
Vol 151 (12) ◽  
pp. 904-907 ◽  
Author(s):  
Xia Liu ◽  
Hang Song ◽  
Guoqing Miao ◽  
Hong Jiang ◽  
Lianzhen Cao ◽  
...  
2008 ◽  
Vol 466 (1-2) ◽  
pp. 507-511
Author(s):  
Shuzhen Yu ◽  
Guoqing Miao ◽  
Jianchun Xie ◽  
Yixin Jin ◽  
Tiemin Zhang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 928
Author(s):  
Yong Du ◽  
Zhenzhen Kong ◽  
Muhammet Toprak ◽  
Guilei Wang ◽  
Yuanhao Miao ◽  
...  

This work presents the growth of high-quality Ge epilayers on Si (001) substrates using a reduced pressure chemical vapor deposition (RPCVD) chamber. Based on the initial nucleation, a low temperature high temperature (LT-HT) two-step approach, we systematically investigate the nucleation time and surface topography, influence of a LT-Ge buffer layer thickness, a HT-Ge growth temperature, layer thickness, and high temperature thermal treatment on the morphological and crystalline quality of the Ge epilayers. It is also a unique study in the initial growth of Ge epitaxy; the start point of the experiments includes Stranski–Krastanov mode in which the Ge wet layer is initially formed and later the growth is developed to form nuclides. Afterwards, a two-dimensional Ge layer is formed from the coalescing of the nuclides. The evolution of the strain from the beginning stage of the growth up to the full Ge layer has been investigated. Material characterization results show that Ge epilayer with 400 nm LT-Ge buffer layer features at least the root mean square (RMS) value and it’s threading dislocation density (TDD) decreases by a factor of 2. In view of the 400 nm LT-Ge buffer layer, the 1000 nm Ge epilayer with HT-Ge growth temperature of 650 °C showed the best material quality, which is conducive to the merging of the crystals into a connected structure eventually forming a continuous and two-dimensional film. After increasing the thickness of Ge layer from 900 nm to 2000 nm, Ge surface roughness decreased first and then increased slowly (the RMS value for 1400 nm Ge layer was 0.81 nm). Finally, a high-temperature annealing process was carried out and high-quality Ge layer was obtained (TDD=2.78 × 107 cm−2). In addition, room temperature strong photoluminescence (PL) peak intensity and narrow full width at half maximum (11 meV) spectra further confirm the high crystalline quality of the Ge layer manufactured by this optimized process. This work highlights the inducing, increasing, and relaxing of the strain in the Ge buffer and the signature of the defect formation.


Author(s):  
Alain Claverie ◽  
Zuzanna Liliental-Weber

GaAs layers grown by MBE at low temperatures (in the 200°C range, LT-GaAs) have been reported to have very interesting electronic and transport properties. Previous studies have shown that, before annealing, the crystalline quality of the layers is related to the growth temperature. Lowering the temperature or increasing the layer thickness generally results in some columnar polycrystalline growth. For the best “temperature-thickness” combinations, the layers may be very As rich (up to 1.25%) resulting in an up to 0.15% increase of the lattice parameter, consistent with the excess As. Only after annealing are the technologically important semi-insulating properties of these layers observed. When annealed in As atmosphere at about 600°C a decrease of the lattice parameter to the substrate value is observed. TEM studies show formation of precipitates which are supposed to be As related since the average As concentration remains almost unchanged upon annealing.


2008 ◽  
Vol 1068 ◽  
Author(s):  
Ewa Dumiszewska ◽  
Wlodek Strupinski ◽  
Piotr Caban ◽  
Marek Wesolowski ◽  
Dariusz Lenkiewicz ◽  
...  

ABSTRACTThe influence of growth temperature on oxygen incorporation into GaN epitaxial layers was studied. GaN layers deposited at low temperatures were characterized by much higher oxygen concentration than those deposited at high temperature typically used for epitaxial growth. GaN buffer layers (HT GaN) about 1 μm thick were deposited on GaN nucleation layers (NL) with various thicknesses. The influence of NL thickness on crystalline quality and oxygen concentration of HT GaN layers were studied using RBS and SIMS. With increasing thickness of NL the crystalline quality of GaN buffer layers deteriorates and the oxygen concentration increases. It was observed that oxygen atoms incorporated at low temperature in NL diffuse into GaN buffer layer during high temperature growth as a consequence GaN NL is the source for unintentional oxygen doping.


1999 ◽  
Vol 595 ◽  
Author(s):  
Nikhil Sharma ◽  
David Tricker ◽  
Vicki Keast ◽  
Stewart Hooper ◽  
Jon Heffernan ◽  
...  

AbstractAlthough GaN has been grown mainly by metal organic chemical vapour deposition (MOCVD), molecular beam epitaxy (MBE) offers the advantages of lower growth temperatures and a more flexible control over doping elements and their concentrations [1]. We are growing GaN by MBE on sapphire substrates, using a GaN buffer layer to reduce the misfit strain, thus improving the structural quality of the epilayer. The quality of the GaN epilayers (in terms of their photoluminescence, mobility and structure) has been investigated as a function of the buffer layer thickness and annealing time.The investigation showed that increasing the buffer layer thickness improved the mobility of the material because the defect density in the GaN epilayer decreased. Optical characterisation showed that the ratio of the donor band exciton (DBE) peak (3.47eV) to the structural peak (3.27eV) in the photoluminescence spectrum, measured at 10K, increased with decreasing defect density. The unwanted structural peak can be considered to originate from a shallow donor to a shallow acceptor transition, which is clearly related to the structural defects in GaN. Thus by increasing the buffer layer thickness and annealing time the structural quality, mobility and photoluminescence improves in the GaN epilayers.Structural characterisation by transmission electron microscopy (TEM) showed that the observed increase in the DBE to structural peak ratio in the photoluminescence spectra could be correlated with a decrease in the density of stacking faults in the GaN epilayers. The detailed structure of these stacking faults was investigated by dark field and high resolution TEM. Their effect on the electrical and optical behaviour of GaN may be assessed by determining the local change in the dielectric function in the vicinity of individual stacking faults.


1997 ◽  
Vol 44 (6) ◽  
pp. 2298-2305 ◽  
Author(s):  
T.R. Weatherford ◽  
P.W. Marshall ◽  
C.J. Marshall ◽  
D.J. Fouts ◽  
B. Mathes ◽  
...  

2008 ◽  
Vol 600-603 ◽  
pp. 255-258
Author(s):  
Gwiy Sang Chung ◽  
Kang San Kim

This paper describes the characteristics of poly (Polycrystalline) 3C-SiC grown on SiO2 and AlN buffers, respectively. The crystallinity and the bonding structure of poly 3C-SiC grown on each buffer layer were investigated according to various growth temperatures. The crystalline quality of poly 3C-SiC was improved from resulting in decrease of FWHM (Full width half maximum) of XRD and FT-IR by increasing the growth temperature. The minimum growth temperature of poly 3C-SiC was 1100 °C. The surface chemical composition and the electron mobility of poly 3C-SiC grown on each buffer layer were investigated by XPS and Hall Effect. The chemical compositions of surface of poly 3C-SiC grown on SiO2 and AlN were not different. However, their electron mobilities were 7.65 ㎝2/V.s and 14.8 ㎝2/V.s, respectively. Therefore, since the electron mobility of 3C-SiC/AlN was two times higher than that of 3C-SiC/SiO2, AlN is a suitable material, as buffer layer, for SiC growth with excellent crystalline quality.


2003 ◽  
Vol 798 ◽  
Author(s):  
Abhishek Jain ◽  
Joan M. Redwing

ABSTRACTThin films of InN were grown on (0001) Sapphire by MOCVD. The effect of growth conditions and buffer layer on the film morphology was studied. Growth temperature and TMI flow rate were important factors in the growth of InN. The use of a low temperature AlN buffer layer was also found to improve the morphology and crystal quality of the films. Thin (<40Å) AlN buffer layers produced the best results while polycrystalline InN was obtained when the buffer layer thickness exceeded 60Å. Delamination of the InN films was observed to occur at growth temperature, which limited the thickness of the films to less than 300 nm. A room temperature mobility of 792 cm2/Vs and an electron concentration of 2.1×1019 cm-3 were measured in an approximately 200 nm thick InN layer grown on sapphire.


Sign in / Sign up

Export Citation Format

Share Document