Study of the growth mechanism and properties of InN films grown by MOCVD

2003 ◽  
Vol 798 ◽  
Author(s):  
Abhishek Jain ◽  
Joan M. Redwing

ABSTRACTThin films of InN were grown on (0001) Sapphire by MOCVD. The effect of growth conditions and buffer layer on the film morphology was studied. Growth temperature and TMI flow rate were important factors in the growth of InN. The use of a low temperature AlN buffer layer was also found to improve the morphology and crystal quality of the films. Thin (<40Å) AlN buffer layers produced the best results while polycrystalline InN was obtained when the buffer layer thickness exceeded 60Å. Delamination of the InN films was observed to occur at growth temperature, which limited the thickness of the films to less than 300 nm. A room temperature mobility of 792 cm2/Vs and an electron concentration of 2.1×1019 cm-3 were measured in an approximately 200 nm thick InN layer grown on sapphire.

1994 ◽  
Vol 339 ◽  
Author(s):  
L. B. Rowland ◽  
K. Doverspike ◽  
D. K. Gaskill ◽  
J. A. Freitas

ABSTRACTGallium nitride layers were grown by organometallic vapor phase epitaxy on AlN buffer layers deposited in the range of 450–650°C. The GaN growth conditions were kept constant so that changes in film properties were due only to changes in the buffer layer growth temperature. A monotonie improvement in relative crystallinity as measured by double-crystal X-ray diffraction corresponded with a decrease in buffer layer growth temperature. Improvements in GaN electron transport at 300 and 77 K were also observed with decreasing AlN buffer layer temperature. Photoluminescence spectra for the lowest temperatures studied were dominated by sharp excitonic emission, with some broadening of the exciton linewidth observed as the buffer layer growth temperature was increased. The full width at half maximum of the excitonic emission was 2.7 meV for GaN grown on a 450°C buffer layer. These results indicate that minimizing AlN buffer layer temperature results in improvements in GaN film quality.


2014 ◽  
Vol 881-883 ◽  
pp. 1117-1121 ◽  
Author(s):  
Xiang Min Zhao

ZnO thin films with different thickness (the sputtering time of AlN buffer layers was 0 min, 30 min,60 min, and 90 min, respectively) were prepared on Si substrates using radio frequency (RF) magnetron sputtering system.X-ray diffraction (XRD), atomic force microscope (AFM), Hall measurements setup (Hall) were used to analyze the structure, morphology and electrical properties of ZnO films.The results show that growth are still preferred (002) orientation of ZnO thin films with different sputtering time of AlN buffer layer,and for the better growth of ZnO films, the optimal sputtering time is 60 min.


2008 ◽  
Vol 1068 ◽  
Author(s):  
Ewa Dumiszewska ◽  
Wlodek Strupinski ◽  
Piotr Caban ◽  
Marek Wesolowski ◽  
Dariusz Lenkiewicz ◽  
...  

ABSTRACTThe influence of growth temperature on oxygen incorporation into GaN epitaxial layers was studied. GaN layers deposited at low temperatures were characterized by much higher oxygen concentration than those deposited at high temperature typically used for epitaxial growth. GaN buffer layers (HT GaN) about 1 μm thick were deposited on GaN nucleation layers (NL) with various thicknesses. The influence of NL thickness on crystalline quality and oxygen concentration of HT GaN layers were studied using RBS and SIMS. With increasing thickness of NL the crystalline quality of GaN buffer layers deteriorates and the oxygen concentration increases. It was observed that oxygen atoms incorporated at low temperature in NL diffuse into GaN buffer layer during high temperature growth as a consequence GaN NL is the source for unintentional oxygen doping.


1999 ◽  
Vol 4 (S1) ◽  
pp. 417-422 ◽  
Author(s):  
E. C. Piquette ◽  
P. M. Bridger ◽  
R. A. Beach ◽  
T. C. McGill

The surface morphology of GaN is observed by atomic force microscopy for growth on GaN and AlN buffer layers and as a function of III/V flux ratio. Films are grown on sapphire substrates by molecular beam epitaxy using a radio frequency nitrogen plasma source. Growth using GaN buffer layers leads to N-polar films, with surfaces strongly dependent on the flux conditions used. Flat surfaces can be obtained by growing as Ga-rich as possible, although Ga droplets tend to form. Ga-polar films can be grown on AlN buffer layers, with the surface morphology determined by the conditions of buffer layer deposition as well as the III/V ratio for growth of the GaN layer. Near-stoichiometric buffer layer growth conditions appear to support the flattest surfaces in this case. Three defect types are typically observed in GaN films on AlN buffers, including large and small pits and “loop” defects. It is possible to produce surfaces free from large pit defects by growing thicker films under more Ga-rich conditions. In such cases the surface roughness can be reduced to less than 1 nm RMS.


2011 ◽  
Vol 151 (12) ◽  
pp. 904-907 ◽  
Author(s):  
Xia Liu ◽  
Hang Song ◽  
Guoqing Miao ◽  
Hong Jiang ◽  
Lianzhen Cao ◽  
...  

2003 ◽  
Vol 798 ◽  
Author(s):  
Gon Namkoong ◽  
W. Alan ◽  
A. S. Brown ◽  
M. Losurdo ◽  
M. M. Giangregorio ◽  
...  

ABSTRACTThe effect of the buffer layers on the subsequent GaN epitaxial layers and electrical properties of AlGaN/AlN/GaN heterojunction structures nitrided at various temperatures was investigated. For AlN buffer layers, two different growth conditions of AlN buffer layers were introduced to avoid Al droplets. We found that etch pit density and structural quality of GaN epitaxial layer strongly depends on the growth conditions of AlN buffer layers. When using a double buffer layer (low temperature GaN on high temperature AlN) for 200 °C nitridation, the etch pit density was measured to high 107 cm-2 in GaN epitaxial layers. Furthermore, we observed that electrical properties of AlGaN/AlN/GaN heterostructures depend on growth conditions of buffer layers and nitridation temperatures. The mobility in Al0.33Ga0.67N/AlN/GaN structures grown on single AlN buffer layers for 200 °C nitridation were 1300 cm2/Vs at a sheet charge of 1.6×1013 cm-2. Using the double buffer layer for 200 °C nitridation, the mobility increased to 1587 cm2/Vs with a sheet charge of 1.25×1013 cm-2.


1998 ◽  
Vol 537 ◽  
Author(s):  
E. C. Piquette ◽  
P. M. Bridger ◽  
R. A. Beach ◽  
T. C. McGill

AbstractThe surface morphology of GaN is observed by atomic force microscopy for growth on GaN and AlN buffer layers and as a function of III/V flux ratio. Films are grown on sapphire substrates by molecular beam epitaxy using a radio frequency nitrogen plasma source. Growth using GaN buffer layers leads to N-polar films, with surfaces strongly dependent on the flux conditions used. Flat surfaces can be obtained by growing as Ga-rich as possible, although Ga droplets tend to form. Ga-polar films can be grown on AlN buffer layers, with the surface morphology determined by the conditions of buffer layer deposition as well as the III/V ratio for growth of the GaN layer. Near-stoichiometric buffer layer growth conditions appear to support the flattest surfaces in this case. Three defect types are typically observed in GaN films on AlN buffers, including large and small pits and “loop” defects. It is possible to produce surfaces free from large pit defects by growing thicker films under more Ga-rich conditions. In such cases the surface roughness can be reduced to less than l nm RMS.


2005 ◽  
Vol 863 ◽  
Author(s):  
Ting Y. Tsui ◽  
Andrew J. McKerrow ◽  
Joost J. Vlassak

AbstractOne of the most common forms of cohesive failure observed in brittle thin films subjected to a tensile residual stress is channel cracking, a fracture mode in which through-film cracks propagate in the film. The crack growth rate depends on intrinsic film properties, residual stress, the presence of reactive species in the environment, and the precise film stack. In this paper, we investigate the effect of various buffer layers sandwiched between a brittle carbon-doped-silicate (CDS) film and a silicon substrate on channel cracking of the CDS film. The results show that channel cracking is enhanced if the buffer layer is more compliant than the silicon substrate. Crack velocity increases with increasing buffer layer thickness and decreasing buffer layer stiffness. This is caused by a reduction of the constraint imposed by the substrate on the film and a commensurate increase in energy release rate. The degree of constraint is characterized experimentally as a function of buffer layer thickness and stiffness, and compared to the results of a simple shear lag model that was proposed previously.


2014 ◽  
Vol 787 ◽  
pp. 227-231 ◽  
Author(s):  
Chuan Li ◽  
Lin Shu ◽  
Li Jun He ◽  
Xing Zhao Liu

A study of depositing high quality c-axis oriented polycrystalline aluminum nitride thin film at room temperature was presented. Aluminum nitride films were grown by mid-frequency (MF) reactive sputtering. Metallic aluminum target was used to deposit AlN films in Ar/N2 gas mixture. A 50nm thick of N-rich AlN buffer layer was deposited at the initial stage of sputtering process to improve the film quality. The composition, preferred orientation and residual stress of the films were analyzed by EDS, XRD and Raman microscope, respectively. The results showed that the N-rich AlN buffer layer improved the textured degree and reduced the residual stress significantly of the AlN thin films. The near stoichiometric AlN thin film with highly textured degree was obtained. The FWHM value of the rocking curve for (0002) diffraction peak was about 1.6°, and the residual tensile stress was about 500MPa. The piezoelectric d33 coefficient increased with the decreasing of FWHM value, and the highest d33 coefficient of 3.6 pF/C was obtained.


Sign in / Sign up

Export Citation Format

Share Document