scholarly journals Telomerase Protects Werner Syndrome Lineage-Specific Stem Cells from Premature Aging

2014 ◽  
Vol 2 (4) ◽  
pp. 534-546 ◽  
Author(s):  
Hoi-Hung Cheung ◽  
Xiaozhuo Liu ◽  
Lucile Canterel-Thouennon ◽  
Lu Li ◽  
Catherine Edmonson ◽  
...  
2007 ◽  
Vol 1100 (1) ◽  
pp. 455-469 ◽  
Author(s):  
T. DAVIS ◽  
F. S. WYLLIE ◽  
M. J. ROKICKI ◽  
M. C. BAGLEY ◽  
D. KIPLING

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
So-mi Kang ◽  
Min-Ho Yoon ◽  
Su-Jin Lee ◽  
Jinsook Ahn ◽  
Sang Ah Yi ◽  
...  

AbstractWerner syndrome (WRN) is a rare progressive genetic disorder, caused by functional defects in WRN protein and RecQ4L DNA helicase. Acceleration of the aging process is initiated at puberty and the expected life span is approximately the late 50 s. However, a Wrn-deficient mouse model does not show premature aging phenotypes or a short life span, implying that aging processes differ greatly between humans and mice. Gene expression analysis of WRN cells reveals very similar results to gene expression analysis of Hutchinson Gilford progeria syndrome (HGPS) cells, suggesting that these human progeroid syndromes share a common pathological mechanism. Here we show that WRN cells also express progerin, an abnormal variant of the lamin A protein. In addition, we reveal that duplicated sequences of human WRN (hWRN) from exon 9 to exon 10, which differ from the sequence of mouse WRN (mWRN), are a natural inhibitor of progerin. Overexpression of hWRN reduced progerin expression and aging features in HGPS cells. Furthermore, the elimination of progerin by siRNA or a progerin-inhibitor (SLC-D011 also called progerinin) can ameliorate senescence phenotypes in WRN fibroblasts and cardiomyocytes, derived from WRN-iPSCs. These results suggest that progerin, which easily accumulates under WRN-deficient conditions, can lead to premature aging in WRN and that this effect can be prevented by SLC-D011.


2020 ◽  
Author(s):  
Juan Manuel Iglesias-Pedraz ◽  
Diego Matia Fossatti Jara ◽  
Valeria Del Carmen Valle-Riestra Felice ◽  
Sergio Rafael Cruz Visalaya ◽  
Jose Antonio Ayala Felix ◽  
...  

Abstract Background The Werner syndrome protein (WRN) belongs to the RecQ family of helicases and its loss of function results in the premature aging disease Werner syndrome (WS). We previously demonstrated that an early cellular change induced by WRN depletion is a posttranscriptional decrease in the levels of enzymes involved in metabolic pathways that control macromolecular synthesis and protect from oxidative stress. This metabolic shift is tolerated by normal cells but causes mitochondria dysfunction and acute oxidative stress in rapidly growing cancer cells, thereby suppressing their proliferation.Results To identify the mechanism underlying this metabolic shift, we examined global protein synthesis and mRNA nucleocytoplasmic distribution after WRN knockdown. We determined that WRN depletion in HeLa cells attenuates global protein synthesis without affecting the level of key components of the mRNA export machinery. We further observed that WRN depletion affects the nuclear export of mRNAs and demonstrated that WRN directly interacts with mRNA and the mRNA export receptor Nuclear Export Factor 1 (NXF1).Conclusions Our findings suggest that WRN influences the export of mRNAs from the nucleus through its interaction with the NXF1 export receptor thereby affecting cellular proteostasis. In summary, we identified a new partner and a novel function of WRN, which is especially important for the proliferation of cancer cells.


2020 ◽  
Author(s):  
Juan Manuel Iglesias-Pedraz ◽  
Diego Matia Fossatti Jara ◽  
Valeria Del Carmen Valle-Riestra Felice ◽  
Sergio Rafael Cruz Visalaya ◽  
Jose Antonio Ayala Felix ◽  
...  

Abstract BackgroundThe Werner syndrome protein (WRN) belongs to the RecQ family of helicases and its loss of function results in the premature aging disease Werner syndrome (WS). We previously demonstrated that an early cellular change induced by WRN depletion is a posttranscriptional decrease in the levels of enzymes involved in metabolic pathways that control macromolecular synthesis and protect from oxidative stress. This metabolic shift is tolerated by normal cells but causes mitochondria dysfunction and acute oxidative stress in rapidly growing cancer cells, thereby suppressing their proliferation.Results To identify the mechanism underlying this metabolic shift, we examined global protein synthesis and mRNA nucleocytoplasmic distribution after WRN knockdown. We determined that WRN depletion in HeLa cells attenuates global protein synthesis without affecting the level of key components of the mRNA export machinery. We further observed that WRN depletion affects the nuclear export of mRNAs and demonstrated that WRN directly interacts with mRNA and the mRNA export receptor Nuclear Export Factor 1 (NXF1).Conclusions Our findings suggest that WRN influences the export of mRNAs from the nucleus through its interaction with the NXF1 export receptor thereby affecting cellular proteostasis. In summary, we identified a new partner and a novel function of WRN, which is especially important for the proliferation of cancer cells.


2020 ◽  
Author(s):  
Juan Manuel Iglesias-Pedraz ◽  
Diego Matia Fossatti Jara ◽  
Valeria Del Carmen Valle-Riestra Felice ◽  
Sergio Rafael Cruz Visalaya ◽  
Jose Antonio Ayala Felix ◽  
...  

Abstract BackgroundThe Werner syndrome protein (WRN) belongs to the RecQ family of helicases and its loss of function results in the premature aging disease Werner syndrome (WS). We previously demonstrated that an early cellular change induced by WRN depletion is a posttranscriptional decrease in the levels of enzymes involved in metabolic pathways that control macromolecular synthesis and protect from oxidative stress. This metabolic shift is tolerated by normal cells but causes mitochondria dysfunction and acute oxidative stress in rapidly growing cancer cells, thereby suppressing their proliferation.ResultsTo identify the mechanism underlying this metabolic shift, we examined global protein synthesis and mRNA nucleocytoplasmic distribution after WRN knockdown. We determined that WRN depletion in HeLa cells attenuates global protein synthesis without affecting the level of key components of the mRNA export machinery. We further observed that WRN depletion affects the nuclear export of mRNAs and demonstrated that WRN interacts with mRNA and the Nuclear RNA Export Factor 1 (NXF1).ConclusionsOur findings suggest that WRN influences the export of mRNAs from the nucleus through its interaction with the NXF1 export receptor thereby affecting cellular proteostasis. In summary, we identified a new partner and a novel function of WRN, which is especially important for the proliferation of cancer cells.


Blood ◽  
2014 ◽  
Vol 124 (10) ◽  
pp. 1622-1625 ◽  
Author(s):  
Serine Avagyan ◽  
Michael Churchill ◽  
Kenta Yamamoto ◽  
Jennifer L. Crowe ◽  
Chen Li ◽  
...  

Key Points XLF-deficient mice recapitulate the lymphocytopenia of XLF-deficient patients. Premature aging of hematopoietic stem cells underlies the severe and progressive lymphocytopenia in XLF-deficient mice.


2017 ◽  
Vol 53 ◽  
pp. S64
Author(s):  
Keiyo Takubo ◽  
Yukako Ootomo ◽  
Daiki Karigane

2021 ◽  
Vol 13 (575) ◽  
pp. eabd2655
Author(s):  
Wei Wang ◽  
Yuxuan Zheng ◽  
Shuhui Sun ◽  
Wei Li ◽  
Moshi Song ◽  
...  

Understanding the genetic and epigenetic bases of cellular senescence is instrumental in developing interventions to slow aging. We performed genome-wide CRISPR-Cas9–based screens using two types of human mesenchymal precursor cells (hMPCs) exhibiting accelerated senescence. The hMPCs were derived from human embryonic stem cells carrying the pathogenic mutations that cause the accelerated aging diseases Werner syndrome and Hutchinson-Gilford progeria syndrome. Genes whose deficiency alleviated cellular senescence were identified, including KAT7, a histone acetyltransferase, which ranked as a top hit in both progeroid hMPC models. Inactivation of KAT7 decreased histone H3 lysine 14 acetylation, repressed p15INK4b transcription, and alleviated hMPC senescence. Moreover, lentiviral vectors encoding Cas9/sg-Kat7, given intravenously, alleviated hepatocyte senescence and liver aging and extended life span in physiologically aged mice as well as progeroid Zmpste24−/− mice that exhibit a premature aging phenotype. CRISPR-Cas9–based genetic screening is a robust method for systematically uncovering senescence genes such as KAT7, which may represent a therapeutic target for developing aging interventions.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2873-2873
Author(s):  
Artur Slupianek ◽  
Stanislaw Jozwiakowski ◽  
Ewa Gurdek ◽  
Michal O. Nowicki ◽  
Tomasz Skorski

Abstract A genome-wide screen suggested that BCR/ABL kinase might stimulate WRN, a member of the RecQ-like DNA helicases family. The Werner syndrome protein (WRN) exerts DNA helicase and 3′-5′ exonuclease activities. Inactivating mutations in the WRN gene causes Werner syndrome, characterized by premature aging, genomic instability and cancer predisposition. The WRN helicase unwinds unusual DNA structures, which can occur physiologically, or can be accidentally generated during DNA repair (double-stranded DNA with mismatched tails, bimolecular G4 quartets and Holliday junctions). In addition, WRN physically interacts with components of two major systems for DNA double-strand breaks (DSBs) repair: non-homologous end-joining (NHEJ) and homologous recombination (HR). Here we demonstrated that BCR/ABL regulates the expression of WRN mRNA and protein in CML primary cells and BCR/ABL-transformed cell lines. BCR/ABL kinase-induced WRN expression is mediated by c-MYC, but not STAT5 - dependent transcription as well as by inhibition of caspases-dependent cleavage. In addition, immunoprecipitation and pull-down studies indicated that BCR/ABL interacts directly with WRN resulting in its tyrosine phosphorylation. Mutation analysis revealed that multiple domains/amino acid residues of BCR/ABL and WRN are involved in the interaction. BCR/ABL-positive leukemia cells exerted an enhanced WRN-dependent helicase activity. In addition, immunoprecipitation and double-immunofluorescence co-localization studies demonstrated an elevated interaction between WRN and RAD51 in BCR/ABL cells undergoing genotoxic stress in comparison to parental counterparts. Altogether, it is likely that WRN is involved in DSBs repair by HR in leukemia cells. More detailed studies are underway to pinpoint the role of WRN in DNA damage response in BCR/ABL-transformed cells.


2015 ◽  
Vol 2015 ◽  
pp. 1-3
Author(s):  
Tiphaine Goletto ◽  
Flora Crockett ◽  
Selim Aractingi ◽  
Cecile Toper ◽  
Patricia Senet ◽  
...  

Werner syndrome (WS) is a progeroid or premature aging syndrome characterized by early onset of age-related pathologies and cancer. The average life expectancy of affected people is 52.8 years and tends to increase. The major causes of death are malignancy and myocardial infarction. Increased telomere attrition and decay are thought to play a causative role in the clinical and pathological manifestations of the disease. Although telomere length, with or without germline mutation, is known to be associated with interstitial lung disease, the latter is not associated with WS. To the best of our knowledge, we report the first case describing a WS patient with fatal ILD. This case suggests that older patients with WS could develop ILD. Clinical outcome of WS patients may thus be improved by counselling them regarding smoking cessation or other exposure and by proposing antifibrotic therapy.


Sign in / Sign up

Export Citation Format

Share Document