scholarly journals Supramolecular microgels/microgel scaffolds for tissue repair and regeneration

2021 ◽  
pp. 100006
Author(s):  
Kai Wang ◽  
Zhaoyi Wang ◽  
Haijun Hu ◽  
Changyou Gao
2021 ◽  
Vol 22 (15) ◽  
pp. 7960
Author(s):  
Chao-Yi Wu ◽  
Huang-Yu Yang ◽  
Jing-Long Huang ◽  
Jenn-Haung Lai

Monocytes (Mos) and macrophages (Mφs) are key players in the innate immune system and are critical in coordinating the initiation, expansion, and regression of many autoimmune diseases. In addition, they display immunoregulatory effects that impact inflammation and are essential in tissue repair and regeneration. Juvenile idiopathic arthritis (JIA) is an umbrella term describing inflammatory joint diseases in children. Accumulated evidence suggests a link between Mo and Mφ activation and JIA pathogenesis. Accordingly, topics regarding the signals and mechanisms regulating Mo and Mφ activation leading to pathologies in patients with JIA are of great interest. In this review, we critically summarize recent advances in the understanding of how Mo and Mφ activation is involved in JIA pathogenesis and focus on the signaling pathways and mechanisms participating in the related cell activation processes.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiao-Bing Fu

AbstractWound healing, tissue repair and regenerative medicine are in great demand, and great achievements in these fields have been made. The traditional strategy of tissue repair and regeneration has focused on the level of tissues and organs directly; however, the basic process of repair at the cell level is often neglected. Because the cell is the basic unit of organism structure and function; cell damage is caused first by ischemia or ischemia-reperfusion after severe trauma and injury. Then, damage to tissues and organs occurs with massive cell damage, apoptosis and even cell death. Thus, how to achieve the aim of perfect repair and regeneration? The basic process of tissue or organ repair and regeneration should involve repair of cells first, then tissues and organs. In this manuscript, it is my consideration about how to repair the cell first, then regenerate the tissues and organs.


2021 ◽  
Vol 22 (2) ◽  
pp. 958
Author(s):  
Luca Tamò ◽  
Kleanthis Fytianos ◽  
Fabienne Caldana ◽  
Cedric Simillion ◽  
Anis Feki ◽  
...  

Induced pluripotent stem cell secretome (iPSC-CM) mitigate organ injury and help in repair. Macrophages play a critical role in tissue repair and regeneration and can be directed to promote tissue repair by iPSC-CM, although the exact mechanisms are not known. In the current investigative study, we evaluated the possible mechanism by which iPSC-CM regulates the phenotype and secretory pattern of macrophages in vitro. Macrophages were obtained from human peripheral blood mononuclear cells and differentiated to various subpopulations and treated with either iPSC-CM or control media in vitro. Macrophage phenotype was assessed by flow cytometry, gene expression changes by qRT PCR and secretory pattern by multiplex protein analysis. The protein and gene interaction network revealed the involvement of Amyloid precursor protein (APP) and ELAV-like protein 1 (ELAVL-1) both present in the iPSC-CM to play an important role in regulating the macrophage phenotype and their secretory pattern. This exploratory study reveals, in part, the possible mechanism and identifies two potential targets by which iPSC-CM regulate macrophages and help in repair and regeneration.


2021 ◽  
Vol 22 (5) ◽  
pp. 2472
Author(s):  
Carl Randall Harrell ◽  
Valentin Djonov ◽  
Vladislav Volarevic

Mesenchymal stem cells (MSCs) are self-renewable, rapidly proliferating, multipotent stem cells which reside in almost all post-natal tissues. MSCs possess potent immunoregulatory properties and, in juxtacrine and paracrine manner, modulate phenotype and function of all immune cells that participate in tissue repair and regeneration. Additionally, MSCs produce various pro-angiogenic factors and promote neo-vascularization in healing tissues, contributing to their enhanced repair and regeneration. In this review article, we summarized current knowledge about molecular mechanisms that regulate the crosstalk between MSCs and immune cells in tissue repair and regeneration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Teodora Bavaro ◽  
Sara Tengattini ◽  
Refaya Rezwan ◽  
Enrica Chiesa ◽  
Caterina Temporini ◽  
...  

AbstractExogenous application of human epidermal growth factor (hEGF) stimulates epidermal wound healing. The aim of this study was to develop bioconjugates based on hEGF mimicking the protein in its native state and thus suitable for tissue engineering applications, in particular for treating skin-related disorders as burns. Ribonuclease A (RNase A) was used to investigate a number of different activated-agarose carriers: cyanogen bromide (CNBr)-activated-agarose and glyoxyl-agarose showed to preserve the appropriate orientation of the protein for receptor binding. EGF was immobilized on these carriers and immobilization yield was evaluated (100% and 12%, respectively). A peptide mapping of unbound protein regions was carried out by LC–MS to take evidence of the residues involved in the immobilization and, consequently, the flexibility and surface accessibility of immobilized EGF. To assess cell proliferative activities, 10, 25, 50, and 100 ng/mL of each immobilized EGF sample were seeded on fibroblast cells and incubated for 24, 48 and 72 h. The immobilized growth factor showed significantly high cell proliferative activity at 50 and 100 ng/mL compared to control and soluble EGF. Although both of the immobilized samples show dose-dependency when seeded with high number of fibroblast cells, CNBr-agarose-EGF showed a significantly high activity at 100 ng/mL and 72 h incubation, compared to glyoxyl-agarose-EGF.


2011 ◽  
Vol 53 (2) ◽  
pp. 177-185 ◽  
Author(s):  
Ada Repiso ◽  
Cora Bergantiños ◽  
Montserrat Corominas ◽  
Florenci Serras

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Chen ◽  
Huaxing Xu ◽  
Kun Xia ◽  
Shuhua Cheng ◽  
Qi Zhang

Abstract Background Unresolved inflammation and tissue destruction are considered to underlie the failure of dental pulp repair. As key mediators of the injury response, dental pulp stem cells (DPSCs) play a critical role in pulp tissue repair and regeneration. Resolvin E1 (RvE1), a major dietary omega-3 polyunsaturated fatty-acid metabolite, is effective in resolving inflammation and activating wound healing. However, whether RvE1 facilitates injured pulp-tissue repair and regeneration through timely resolution of inflammation and rapid mobilization of DPSCs is unknown. Therefore, we established a pulp injury model and investigated the effects of RvE1 on DPSC-mediated inflammation resolution and injured pulp repair. Methods A pulp injury model was established using 8-week-old Sprague-Dawley rats. Animals were sacrificed on days 1, 3, 7, 14, 21, and 28 after pulp capping with a collagen sponge immersed in PBS with RvE1 or PBS. Hematoxylin-eosin and Masson’s trichrome staining, immunohistochemistry, and immunohistofluorescence were used to evaluate the prohealing properties of RvE1. hDPSCs were incubated with lipopolysaccharide (LPS) to induce an inflammatory response, and the expression of inflammatory factors after RvE1 application was measured. Effects of RvE1 on hDPSC proliferation, chemotaxis, and odontogenic differentiation were evaluated by CCK-8 assay, transwell assay, alkaline phosphatase (ALP) staining, alizarin red staining, and quantitative PCR, and possible signaling pathways were explored using western blotting. Results In vivo, RvE1 reduced the necrosis rate of damaged pulp and preserved more vital pulps, and promoted injured pulp repair and reparative dentin formation. Further, it enhanced dentin matrix protein 1 and dentin sialoprotein expression and accelerated pulp inflammation resolution by suppressing TNF-α and IL-1β expression. RvE1 enhanced the recruitment of CD146+ and CD105+ DPSCs to the damaged molar pulp mesenchyme. Isolated primary cells exhibited the mesenchymal stem cell immunophenotype and differentiation. RvE1 promoted hDPSC proliferation and chemotaxis. RvE1 significantly attenuated pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) release and enhanced ALP activity, nodule mineralization, and especially, expression of the odontogenesis-related genes DMP1, DSPP, and BSP in LPS-stimulated DPSCs. RvE1 regulated AKT, ERK, and rS6 phosphorylation in LPS-stimulated DPSCs. Conclusions RvE1 promotes pulp inflammation resolution and dentin regeneration and positively influences the proliferation, chemotaxis, and differentiation of LPS-stimulated hDPSCs. This response is, at least partially, dependent on AKT, ERK, and rS6-associated signaling in the inflammatory microenvironment. RvE1 has promising application potential in regenerative endodontics.


Sign in / Sign up

Export Citation Format

Share Document